PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Development of a Catalyst for Flue Gas Purification from Carbon Monoxide of Multi-Chamber Furnaces for Baking Electrode Blanks

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The catalysts based on natural zeolite-clinoptilolite of Sokyrnytsia deposit modified with oxides of Mn4+, Fe2+, Fe3+, Cu2+, Cr3+ were synthesized. It was determined that 100% conversion of carbon monoxide was achieved at a temperature of 390°C when using the copper-manganese-oxide catalyst (30% CuO + 70% MnO2). It was shown that although the use of the manganese-oxide catalyst provided 92.8% of CO conversion degree, this catalyst had the most advantages for application compared to the other studied solids. The structural parameters of the manganese-oxide catalyst were determined using XRD, SEM, and nitrogen adsorption. The composition of the main elements of the catalyst samples was determined by micro-X-ray spectral analysis. It was shown that using the catalyst containers in chambers heated by flue gases in the fire channels of a multi-chamber furnace for baking of electrode blanks can be one of the constructive solutions to the problem of flue gas purification from carbon monoxide. The environmental safety of the copper-manganese-oxide catalyst application for the treatment of the flue gases of electrode production is justified by obtaining a catalyst from spent sorbents for purification of the manganese-containing natural water and its non-toxicity in the case of burial or storage in landfills.
Rocznik
Strony
174--187
Opis fizyczny
Bibliogr. 41 poz., rys., tab.
Twórcy
  • Faculty of Chemical Engineering, Igor Sikorsky Kyiv Polytechnic Institute, Prosp. Peremohy, 37/4, 03056 Kyiv, Ukraine
  • L.V. Pisarzhevskii Institute of Physical Chemistry of the National Academy of Sciences of Ukraine, Prosp. of Science, 31, 03028 Kyiv, Ukraine
  • Faculty of Chemical Engineering, Igor Sikorsky Kyiv Polytechnic Institute, Prosp. Peremohy, 37/4, 03056 Kyiv, Ukraine
  • Faculty of Chemical Engineering, Igor Sikorsky Kyiv Polytechnic Institute, Prosp. Peremohy, 37/4, 03056 Kyiv, Ukraine
autor
  • Private Joint Stock Company «Ukrainian Graphite», Pivnichne shose str., 20, 69600 Zaporizhzhia, Ukraine
autor
  • L.V. Pisarzhevskii Institute of Physical Chemistry of the National Academy of Sciences of Ukraine, Prosp. of Science, 31, 03028 Kyiv, Ukraine
  • National University of Kyiv-Mohyla Academy, Skovorody Street, 2, 04070 Kyiv, Ukraine
  • L.V. Pisarzhevskii Institute of Physical Chemistry of the National Academy of Sciences of Ukraine, Prosp. of Science, 31, 03028 Kyiv, Ukraine
Bibliografia
  • 1. Кursov S.V. 2015. Carbon Monoxide: Physiological Importance and Toxicology. Emergency medicine, 6 (69), 9–16. (in Russian).
  • 2. Patel D. M., Kodgire P., Dwivedi A. H. 2019. Low temperature oxidation of carbon monoxide for heat recuperation: A green approach for energy production and a catalytic review. Journal of Cleaner Production, 97.
  • 3. Statistical Yearbook «Environment of Ukraine 2018». 2019. State Statistics Service of Ukraine: Kyiv, 214. (in Ukrainian).
  • 4. Ivanenko O. 2020. Implementation of risk assessment for critical infrastructure protection with the use of risk matrix. ScienceRise, 2, 26–38.
  • 5. Environmental passport of Zaporizhzhia region for 2018. 2019. Official portal of the Ministry of Energy and Environmental Protection of Ukraine, 173. (in Ukrainian).
  • 6. Riedhammer. 2006. Ring Pit Furnaces for Baking of high quality Anodes – an Overview, 15.
  • 7. Panov Ye., Gomelia N., Ivanenko O., Vahin A., Leleka S. 2020. Assessment of the Effect of Oxygen and Carbon Dioxide Concentrations on Gas Evolution During Heat Treatment of Thermoanthracite Carbon Material. Journal of Ecological Engineering, 2 (2), 139–149.
  • 8. The Order no. 309 of the Ministry of Ecology and Natural Resources of Ukraine dated June 27, 2006 The Standards of Maximum Permissible Emissions of Polluting Substances from Stationary Sources. (in Ukrainian).
  • 9. Karvackiі A. Ya., Leleka S. V., Pulinec I. V., Lazarіev T. V. 2011. Development of burning regulations taking into account the dynamics of gas emission of baking blanks. Eastern-European Journal of Enterprise Technologies, 6[5(54)], 42–45. (in Ukrainian).
  • 10. Karvatskii A. Ya., Shylovych I. L., Krutous L. V., Kutuzov S. V. 2013. Decrease of CO concentration using installation for carbon monooxide conversion. Eastern-European Journal of Enterprise Technologies, 2 (11 (62)), 38–41. (in Ukrainian).
  • 11. Belokon K. V., Belokon Y. A., Kozhemyakin G. B., Matukhno E. V. 2016. Еnvironmental assessment of the intermetallic catalysts utilization efficiency for deactivation of the pollutants emitted by electrode production enterprises. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 3, 87–94.
  • 12. Basaraba Y. B., Zasadnyi Т. М. 2014. Prospects for the zeolites application of the Sokyrnytsia deposit for natural water purification. Ecological Safety and Balanced Use of Resources, 1(11), 46–52. (in Ukrainian).
  • 13. Zasidko I. B., Polutrenko M. S., Mandryk O. M. 2017. Use of zeolite for cleaning of natural water and effluents of communal enterprises. Scientific Bulletin of UNFU, 27(5), 63–66. (in Ukrainian).
  • 14. Malovanyy M., Yarema O., Sakalova G., Vasylinych T. 2010. Purification of wastewater from tanning industry from chromium ions adsorption on natural zeolites. Bulletin of the Kyiv National University of Technologies and Design, 6, 81–85. (in Ukrainian).
  • 15. Yanovska E. S., Zatovskiy I. V., Slobodyanik N. S. 2008. Scientific bases of waste-free technology of industrial wastewater treatment from mixtures of heavy metal ions. Environmental ecology and life safety, 5, 50–54. (in Ukrainian).
  • 16. Grechanovskaya E. E. 2010. Unit cell metric and Si/ Al ratio in zeolites of the heulandite– clinoptilolite series of the Sokirnytsya deposit (Transcarpathia, Ukraine). Mineralogical Journal, 32(4), 12–22. (in Ukrainian).
  • 17. Korablev V. V., Chechevichkin A.V., Boricheva I. B., Samonin V. V. 2017. Тhe structure аnd morphological properties of clinoptilolite modified by manganese dioxide. SPbPU Journal – Physics and Mathematics, 10(1), 100–111. (in Russian).
  • 18. Inglezakis V. J., Zorpas A. A. 2012. Handbook of natural zeolites. Bentham Science Publishers, 705.
  • 19. Tarasevich Yu. I., Goncharuk V. V., Polyakov V. E., Krysenko D. A., Ivanova Z. G., Aksenenko E. V., Tryfonova M. Yu. 2012. Efficient technology for the removal of iron and manganese ions from artesian water using clinoptilolite. Journal of Industrial and Engineering Chemistry, 18 (4), 1438–1440.
  • 20. Panov Ye., Gomelia N., Ivanenko O., Vahin A., Leleka S. 2019. Estimation of the еffect of temperature, the concentration of oxygen and catalysts on the oxidation of the thermoanthracite carbon material. Eastern-European Journal of Enterprise Technologies, 2/6 (98), 43–50.
  • 21. Choi K.-H., Lee D.-H., Kim H.-S., Yoon Y.-C., Park C.-S., Kim Y. H. 2016. Reaction Characteristics of Precious-Metal-Free Ternary Mn–Cu–M (M = Ce, Co, Cr, and Fe) Oxide Catalysts for Low-Temperature CO Oxidation. Industrial & Engineering Chemistry Research, 55(16), 4443–4450.
  • 22. Rakitskaya T. L., Kiose T. A., Vasylechko V. O., Volkova V. Ya., Gryshchouk G. V. 2011. Adsorption-desorption properties of clinoptilolites and the catalytic activity of surface Cu(II)–Pd(II) complexes in the reaction of carbon monoxide oxidation with oxygen. Chemistry of metals and alloys, 4 (3–4), 213–218.
  • 23. Lou J.C., Chang C.K. 2006. Catalytic oxidation of CO over a catalyst produced in the ferrite process. Environmental Engineering Science, 23(6), 1024–1032.
  • 24. Radovenchik V. M., Ivanenko O. I., Radovenchik Y. V., Krisenko T. V. 2020. Application of ferrite materials in water purification processes. Monograph: O. V. Pshonkivsky, 215. (in Ukrainian).
  • 25. Golodets G. I. 1983. Heterogeneous Catalytic Reactions Involving Molecular Oxygen. Studies in Surface Science and Catalysis: Elsevier Science Publishers, 15, 878.
  • 26. Panov E. N., Shilovich I. L., Ivanenko E. I., Buryak V. V. 2012. Thermal and chemical aspects of formation со in the process of baking of electrodes. Eastern-European Journal of Enterprise Technologies, 4 (6 (58)), 15–18. (in Ukrainian).
  • 27. Biemelt T., Wegner K., Teichert J., Lohе M. R., Martin J., Grothe J., Kaskel S. 2016. Hopcalite nanoparticle catalysts with high water vapour stability for catalytic oxidation of carbon monoxide. Applied Catalysis B: Environmental. 184. Р. 208–215.
  • 28. Mirzaei A. A., Shaterian H. R., Joyner R. W., Stockenhuber M., Taylor S. H., Hutchings G. J. 2003. Ambient temperature carbon monoxide oxidation using copper manganese oxide catalysts: Effect of residual Na+ acting as catalyst poison. Catalysis Communications, 4(1), 7–20.
  • 29. Rakhimova N. R., Rakhimov R. Z. 2007. Stone strength of composite slag-alkaline binders with zeolite-containing additives. Vestnik Tomskogo gosudarstvennogo arkhitekturno-stroitel’nogo universiteta. Journal of Construction and Architecture, 2, 191–198. (in Russian).
  • 30. Vatin N. I., Chechevichkin V. N., Chechevichkin A. V., Shilova E. S. 2013. Application of clinoptilolite type zeolites for natural water purification. Magazine of Civil Engineering, 2 (37), 81–88. (in Russian).
  • 31. Tarasevich Yu.I., Kulishenko A.E., Ostapenko R.V., Kravchenko T.B. 2013. Investigation of the process of water demanganation in pilot conditions. Ukrainian chemical journal, 79 (10), 101–106. (in Ukrainian).
  • 32. Mitzi Von David B. 2009. Solution Processing of Inorganic Materials. Angewandte Chemie. 121(30):5503–5503.
  • 33. Doebelin N., Armbruster Т. 2003. Stepwise dehydration and change of framework topology in Cdexchanged heulandite. Microporous and Mesoporous Materials, 61, 85–103.
  • 34. Merkle A. B., Slaughter M. 1968. Determination and refinement of the structure of heulandite. The Аmerican mineralogist, 53, 1120–1138
  • 35. Vasylechko V., Gryshchouk G., Viter M., Kalychak Ya. 2016. Preconcentration of the Sm(III) on transcarpathian clinoptilolite. Visnyk of the Lviv University. Series Chemistry, 57 (1), 232–241. (in Ukrainian).
  • 36. Gevіuk I. N., Kropyvnytska T. P., Sanytsky M. A. 2015. Composite portland cements with the additives of natural zeolite and limestone. Resource-saving materials, structures, buildings and structures, 31, 149–156. (in Ukrainian).
  • 37. Liu X., Chen C., Zhao Y., Jia B. 2013. A review on the synthesis of manganese oxide nanomaterials and their applications on lithium-ion batteries. Journal of Nanomaterials, 2013, ID 736375, 7.
  • 38. Chen S., Zhu J., Han Q., Zheng Z., Yang Y., Wang X. 2009. Shape-Controlled Synthesis of One-Dimensional MnO2 via a Facile Quick Precipitation Procedure and its Electrochemical Properties. Crystal Growth & Design, 9(10), 4356–4361.
  • 39. Greg S., Sing K. 1984. Adsorption, Specific Surface, Porosity. Moscow: Mir, 310. (in Russian).
  • 40. Rakitskaya T. L., Truba A. S., Nagaevs’ka A. V. 2017. Synthesis and catalytic activity of dispersed manganese (IV) oxides in the reaction of ozone decomposition. Odesa National University Herald Chemistry, 22(4(64)), 6–14. (in Ukrainian).
  • 41. Ivanenko О., Gomelya N., Panov Ye. 2020. Evaluation of the influence of the catalysts application on the level of emissions of carbon monoxide in the manufacture of electrodes. Technology audit and production reserves, 4/3(54), 4–11.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4c74348e-408f-4c22-9972-60489c9df25c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.