PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Preparation of composite filaments and 3D prints based on PLA modified with carbon materials with the potential applications in tissue engineering

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper discusses the possibilities of obtaining polylactide-based composites and nanocomposites modified with carbon materials using the extrusion method, as well as the potential of their application in 3D printing technology. The aim of this research is to determine the impact of the presence of carbon additives on the properties of composites: mechanical, thermal and chemical. For this purpose, several research techniques were used such as scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), DSC/TG analysis, infrared Fourier-transform infrared spectroscopy (FTIR) and mechanical tests. It has been shown that it is possible to effectively produce composite materials based on PLA and carbon modifiers after optimization of the extrusion and printing process. Special attention should be paid to the quality of carbon phases homogenization in PLA matrix because the inappropriate dispersion may have a negative effect on the final properties of the composite, especially those modified with nanomaterials. Moreover, the reinforcing effect of carbon phases can be observed, and the quality of obtained filament with carbon fiber after recycling does not differ significantly from the quality of commercially available filaments. The obtained filament was successfully used to print three-dimensional scaffolds. Therefore, both the use of materials which are biodegradable and biocompatible with human tissue and the 3D printing method have the potential to be applied in tissue engineering.
Rocznik
Strony
7--15
Opis fizyczny
Bibliogr. 32 poz., rys., wykr., tab., zdj.
Twórcy
autor
  • AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Krakow, Poland, Faculty of Materials Science and Ceramics, Department of Biomaterials and Composites
autor
  • AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Krakow, Poland, Faculty of Electrical Engineering Automatics, Computer Science and Biomedical Engineering
  • AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Krakow, Poland, Faculty of Materials Science and Ceramics, Department of Biomaterials and Composites
Bibliografia
  • [1] E. Bayraktar: Reference Module in Materials Science and Mate-rials Engineering. Composites Materials, Elsevier (2017)
  • [2] M. Ramalingam, S. Ramakrishna: Nanofiber Composites for Biomedical Applications. Elsevier (2017)
  • [3] G. Turnbull et al.: 3D bioactive composite scaffolds for bone tissue engineering. Bioactive Materials 3(3) (2018) 278-314.
  • [4] M.S. Scholz et al.: The use of composite materials in modern orthopaedic medicine and prosthetic devices: A review. Composite Science and Technology 71(16) (2011) 1791-1803.
  • [5] I. Armentano et al.: Multifunctional nanostructured PLA materials for packaging and tissue engineering. Progress in Polymer Science 38, (10-11) (2013) 1720-1747.
  • [6] I.J. Macha et al.: In vitro study and characterization of cotton fabric PLA composite as a slow antibiotic delivery device for biomedical applications. Journal of Drug Delivery Science and Technology 43 (2018) 172-177.
  • [7] Y. Liu et al.: Composite poly(lactic acid)/chitosan nanofibrous scaffolds for cardiac tissue engineering. International Journal of Biological Macromolecules 103 (2017) 1130-1137.
  • [8] C. Zhao et al.: Development of PLA/Mg composite for orthopedic implant: Tunable degradation and enhanced mineralization. Com-posites Science and Technology 147 (2017) 8-15.
  • [9] S. Tajbakhsh, F. Hajiali: A comprehensive study on the fabrication and properties of biocomposites of poly(lactic acid)/ceramics for bone tissue engineering. Materials Science and Engineering: C 70, Part 1, (2017) 897-912.
  • [10] C. Yang et al.: A facile electrospinning method to fabricate polylactide/graphene/MWCNTs nanofiber membrane for tissues scaffold. Applied Surface Science 362 (2016) 163-168.
  • [11] S. Jatteau et al.: A tubular polycaprolactone/hyaluronic acid scaffolds for nasal cartilage tissue engineering. Engineering of Biomaterials 141 (2017) 8-12.
  • [12] S. Yildirim et al.: Preparation of polycaprolactone/graphene oxide scaffolds: A green route combining supercritical CO2 technology and porogen leaching. The Journal of Supercritical Fluids 133, Part 1 (2018) 156-162.
  • [13] E. Murray et al.: Enzymatic degradation of graphene/polyca-prolactone materials for tissue engineering. Polymer Degradation and Stability 111 (2015) 71-77.
  • [14] E. Torres et al.: Improvement of mechanical and biological properties of Polycaprolactone loaded with Hydroxyapatite and Halloysite nanotubes. Materials Science and Engineering: C 75 (2017) 418-424.
  • [15] S. Mallakpour, N. Nouruzi: Polycaprolactone/metal oxide nano-composites: An overview of recent progress and applications, Biode-gradable and Biocompatible Polymer Composites (2018) 223-263.
  • [16] J.R. Dorgan et al.: Polylactides: properties and prospects of an environmentally benign plastic from renewable resources. Macromolecular Symposia 175(1) (2001) 55-66.
  • [17] E. Castro-Aguirre et al.: Poly(lactic acid)-Mass production, processing, industrial applications, and end of life. Advanced Drug Delivery Reviews 107 (2016) 333-366.
  • [18] D. da Silva et al.: Biocompatibility, biodegradation and excretion of polylactic acid (PLA) in medical implants and theranostic systems. Chemical Engineering Journal 340 (2018) 9-14.
  • [19] F.P. La Mantia et al.: Degradation of polymer blends: A brief review, Polymer Degradation and Stability 145 (2017) 79-92.
  • [20] N.S. Yatigala et al.: Compatibilization improves physico-mechanical properties of biodegradable biobased polymer composites. Composites Part A: Applied Science and Manufacturing 107 (2018) 315-325.
  • [21] P. Huang et al.: 3D printing of carbon fiber-filled conductive silicon rubber. Materials & Design 142 (2018) 11-21.
  • [22] R.T.L. Ferreira et al.: Experimental characterization and mic-rography of 3D printed PLA and PLA reinforced with short carbon fibers. Composites Part B: Engineering 124 (2017) 88-100.
  • [23] E. Murray et al.; Enzymatic degradation of graphene/polyca-prolactone materials for tissue engineering. Polymer Degradation and Stability 111 (2015) 71-77.
  • [24] A. Pantano: Mechanical Properties of CNT/Polymer, Carbon Nanotube-Reinforced Polymers, From Nanoscale to Macroscale, Micro and Nano Technologies (2018) 201-232.
  • [25] K. Kim et al.: 3D printing of multiaxial force sensors using carbon nanotube (CNT)/thermoplastic polyurethane (TPU) filaments. Sensors and Actuators A: Physical 263 (2017) 493-500.
  • [26] K. Mitura, P.K. Zarzycki: Biocompatibility and Toxicity of Al-lotropic Forms of Carbon in Food Packaging, Role of Materials Science in Food Bioengineering. Handbook of Food Bioengineering (2018) 73-107.
  • [27] N.G. Shimpi: Biodegradable and Biocompatible Polymer Composites - Processing, Properties and Applications. Composite Science and Engineering (2017)
  • [28] N. Aliheidari et al.: Fracture resistance measurement of fused deposition modeling 3D printed polymers. Polymer Testing 60 (2017) 94-101.
  • [29] Y. Deng, J. Kuiper: Extrusion-based 3D printing technologies for 3D scaffold engineering, Functional 3D Tissue Engineering Scaffolds - Materials, Technologies and Applications (2017)
  • [30] M. Guvendiren et al.: Designing Biomaterials for 3D Printing, ACS Biomaterials Science & Engineering 2(10) (2016) 1679-1693.
  • [31] www.barrus.pl (10.02.2018)
  • [32] www.nanoamor.com (28.08.2018)
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4c7318be-7d51-44bb-b781-41f1c25a0908
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.