PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Możliwości zastosowania zdalnego systemu monitoringu wgłębnego i powierzchniowego osuwisk w kopalni odkrywkowej węgla brunatnego na podstawie badań wykonanych w KWB Bełchatów w ramach projektu UE RFCS Slopes

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Possibilities of implementation of remote in situ and surface displacement landslide monitoring in lignite opencast mine based on the research conducted within the EU RFCS Slopes project
Języki publikacji
PL
Abstrakty
EN
Landslides in Polish opencast lignite mines are a serious problem for the efficiency of exploitation. They can also pose a threat to adjacent areas and the environment, and in some cases even jeopardize the continuity of lignite supplies to power plants. Such phenomena are associated with a number of factors, the most important of which are the geological engineering structure, groundwater conditions, unfavourable strength parameters of clayey soils and their usually relatively steep slopes. Counteracting such a phenomena, caused by mining activity, is usually difficult because of large size of landslides and the depth of exploitation reaching in some cases over 300 m. The paper presents the first application of on-line monitoring in a Polish opencast lignite mine. Performed in the Bełchatów Mine, in situ monitoring was complemented by satellite radar interferometry (PSI), LiDAR airborne laser scanning, and terrestrial laser scanning. Research within the RFCS EU SLOPES project “Smarter Lignite Open Pit Engineering Solutions” was performed by an international consortium from six European countries. In Poland, the research was located mainly on the western slope of the Bełchatów Field. In this area, in the Polish open pit lignite mine, on-line inclinometer, and a pore pressure monitoring system were the first located at the levels of+42 : -58 m a.s.l. Geological engineering investigations included 100 m depth core drilling, index laboratory tests, IL oedometer tests, CIU, CID triaxial tests, and numerical modelling. The total amount of in situ displacement, during the period December 2016-July 2019, reached 290 mm. The largest displacements up to 250 mm were recorded: to a depth of 45 m in the direction of slope inclination, and smaller ones up to 50 mm to a depth of 72.5 m. The displacements were accompanied by a decre ase in pore pressure values by more than 200 kPa. In other parts of the mine and adjacent areas, the satellite radar interferometry detected displacements up to 60 mm/year on the outer slopes of the Szczerców dump. It also allowed identification of the landslide hazard in other areas. Data obtained from in-situ monitoring and laboratory tests on the western slope of the Bełchatów Field were included in numerical modelling using the shear strength reduction method and the limit equilibrium method. This should allow helping for better recognition and warning of the existing hazards in the investigated area.
Rocznik
Strony
785--799
Opis fizyczny
Bibliogr. 38 poz., rys., tab., wykr.
Twórcy
  • Poltegor-Instytut, Instytut Górnictwa Odkrywkowego, ul. Parkowa 25, 51-616 Wrocław
Bibliografia
  • 1. ANG A.H-S., TANG W.H. 2007 - Probability Concepts in Engineering: Emphasis on Applications to Civil and Environmental Engineering, 2e Instructor Site: Emphasis on Applications to Civil and Environmental Engineering second editon, Wiley & Son, 199-244.
  • 2. BAECHER G.B., CHRISTIAN J.T. 2003 - Reliability and Statistics in Geotechnical Engineering. Wiley & Sons, 11-14.
  • 3. BEDNARCZYK Z. 2017a - Slope Stability Analysis for the Design of a New Lignite Open-Pit Mine. Proc. Eng., https://doi.org/10.1016/j.proeng.2017.05.153
  • 4. BEDNARCZYK Z. 2017b - Landslide Monitoring and Counteraction Technologies in Polish Lignite Opencast Mines, Advancing Culture of Living with Landslides, Vol 5, Landslides in Different Environments edited by Matjaz Mikoz, Vít Vilímek, Yueping Yin, Kyoji Sassa, Springer International; doi 10.1007/978-3-319-5348
  • 5. BEDNARCZYK Z. 2018 - Identification of flysch landslide triggers using nearly real-time monitoring data-an example from the Carpathian Mts., Poland. Eng., Geol., 244: 41-56.
  • 6. BEDNARCZYK J., NOWAK A. 2010 - Strategie i scenariusze rozwoju produkcji energii elektrycznej z węgla brunatnego w obecnych warunkach. Górn. Geoinż., 34 (4): 67-83.
  • 7. BEDNARCZYK Z., SANDVEN R. 2004 - Comparison of CPTU and laboratory tests interpretation of Polish and Norwegian clays. [W:] Fonseca V. (red.), International Geotechnical and Geophysical Site Characterization Conference ISC-2 Porto, Millpress, 1791-1799.
  • 8. CEN (1994). EUROCODE 7, Geotechnical design. Part 1:Gen. rules, ENV1997-1E. Brussels.
  • 9. CHRISTIAN J.T., LADD C.C. 1994 - Reliability applied to slope stability analysis. J. Geot. Engin., 120 (12): 2180-2207.
  • 10. CIUK E., PIWOCKI M. 1980 - Geologia trzeciorzędu Rowu Kleszczowa i jego otoczenia. Przew. LII Zjazdu PTG: 38-56.
  • 11. COOPER M.A. 1987 - Control Surveys in Civil Engin. William Collins Sons & Co., London.
  • 12. CRUDEN D.M., VARNES D.J. 1996 - Landslide types and processes. [W:] Turner A.K., Schuster G.P. (red.), Landslides, investigation and mitigation, Vol. 3. Special report 247, Transportation Res. Board, Nat. Res. Council National Acad. Press, Washington: 36-75.
  • 13. CZARNECKI L., ORGANISCIAK B. 2015 - Zagrożenie utraty stateczności zbocza południowego zbudowanego ze skał mezozoicznych w obszarze rowu drugiego rzędu. III Kongres Górniczy C-5.
  • 14. CZARNECKI L., FELISIAK I. 2004 - Paleo-landslide block of the Southern Frame Fault and its influence on mining operations in the Second-order Graben at the Belchatow Lignite Mine. Warsztaty Górnicze Conf. Proc., 125-138.
  • 15. DANE EUROSTATU 2018 - Wydobycie węgla w UE. | Selected News https://selectednews.info/pl/wydobycie-wegla-w-ue-dane-eurostatu/; dostęp 18.08.2021 r.
  • 16. DEMIREL N., EMIL M.K., DUZGUN H.S. 2011 - Surface coal mine area monitoring using multi-temporal high-resolution satellite imagery. Inter. J. Coal Geol., 86: 3-11.
  • 17. DMITRUK S. 1984 - Problems of geotechnical modeling in open-cast mining. Wyd. Geol.
  • 18. FLISIAK J., RYBICKI S., TYLIKOWSKI M. 2014 - Landslide risk assessment in Belachatow and Turow opencast mines. Prz. Geol., 10/2: 563-572.
  • 19. HAWRYSZ M. 2013 - Metody szacowania efektywnych parametrów wytrzymałościowych. Geoinż. Drogi Mosty Tunele, 3: 34-44.
  • 20. JANECKI W., BEDNARCZYK Z., ZEMBRONSKI J. 1999 - Rozpoznanie warunków geotechnicznych na zboczu południowym KWB Bełchatow w rejonie zejścia do rowu drugiego rzędu na poziomie +124/+94 m n.p.m. w czwartym piętrze górniczym pomiędzy liniami przekrojów 60 i 61 SN. Geosoft Wrocław.
  • 21. JOŃCZYK W., ORGANIŚCIAK B.2010 - Zagrożenia naturalne w KWB Bełchatów rozpoznanie i przeciwdziałanie. Górn. Geoinż., 34 (4): 249-257.
  • 22. KASZTELEWICZ Z. 2012 - Węgiel brunatny w Polsce i na świecie. Węgiel Brunatny, 78 (1): 7-13.
  • 23. KOSSOWSKI L., OLSZEWSKI B., SOWINSKI L., WOJTURSKA M., SOWA J. 1992 - Reinterpretacja budowy geologicznej KWB Bełchatów pomiędzy liniami 42-70NS. Arch. KWB Bełchatów.
  • 24. KULHAWY F.H. 1992 - On the evaluation of static soil properties. In: Geotechnical Special Publication 3 1 : Stability and performance of slopes and embankments II, ASCE. Berkeley, California: 95-115.
  • 25. LU D., WENG Q. 2007 - A survey of image classification methods and techniques for improving classification performance. Intern. J. Remote Sensing, 28: 823-870.
  • 26. MARINOS VP., HOEKE. 2005-The Geological Strength Index: Applications and limitations. Bull. Eng. Geol. Environ., 64: 55-65.
  • 27. MARSHALL A., REZANIA M., HERON C., MARSH S., SMITH M. ZANGANEH H., MASOUDIAN M., HASHEMI A., BOWMAN A., FERNÁNDEZ A., GULLÓN A., RODRIGO C., DECABOM., POZO V., DE PAZ D., GALERAJ., BEDNARCZYK Z., SVOBODAP., BURDAJ., KOUKOUZAS N., DELIVERISA., ZEVGOLIS I., COGGAN J., EYRE M., VANNESCHI M., COCCIA S., CAUVIN L., ALHEIB M., RICHARD T. - 2019 Draft Final Slopes Project Report Deliverable 4.3.1. European Commission Research Programme of the Research Fund for Coal and Steel, Technical Group: TGC1, Grant Agreement number RFCR-CT-2015- 00001 Project Slopes - Smarter Lignite Open Pit Engineering Solutions: 1-120.
  • 28. NGUYEN V.U., CHOWDHURYR.N. 1984 - The probabilistic study of spoil pile stability in strip coal mines - two techniques compared. Int. J. Rock Mech. Min. Sci. Geom., A.21: 303-312.
  • 29. PATRZYK J. 1996 - Zagrożenie osuwiskowe w KWB Bełchatów. Mies. WUG, 2/96: 13-16.
  • 30. PHOON K., KULHAWY F.H. 1999 - Characterization of geotechnical variability, Canadian. Geotech. J., 36: 612-624.
  • 31. PNEN 1997-1:2008 - Eurocode 7, Projektowanie Geotechniczne. Cz. 1: Zasady ogólne.
  • 32. PN-EN 1997-2:2009 - Eurocode 7, Projektowanie Geotechniczne. Cz 2: Badania polowe.
  • 33. POLTEGOR-PROJEKT 2002 - Aktualizacja projektu dla Pola Szczerców. Wydobycie maksymalne wraz z biznesplanem, Wrocław. Nr projektu -1030.1325.002.
  • 34. RYBICKI S. 1996 - Osuwiska w Polskich kopalniach odkrywkowych węgla brunatnego). Wyd. PKrak., 57-164.
  • 35. SCHROETER L., GLÄBER C. 2011 - Analyses and monitoring of lignite mining lakes in East Germany with spectral signatures of Landsat TM. Int. J. Coal Geol., 86: 27-39.
  • 36. WELSCH W., HEUNECKE O., KUHLMANN H. 2000 - Auswertung geodätischer Überwachungsmessungen [W:] Möser et al. (red.), Wichmann Verlag, Heidelberg. Wilkins.
  • 37. WHITMAN R.V. 1984 - Evaluating calculated risk in geotechnical engineering. J. Geot. Engin., 110 (2): 143-188.
  • 38. WILKINS R., BASTIN G., CHRZANOWSKI A. 2003 - ALERT: a fully automated real-time monitoring system. [W:]Proc. Of the 11th FIG Symposium on Deformation Measurements, Santorini, Greece: 209-216. WU T.H.H. 2008 - Reliability analysis of slopes. [W:] Reliability-bas. Design in Geotechnics.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4c6f35f3-17b3-4169-839c-2080c457be45
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.