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Abstract In this paper there are presented free vibrations of thin functionally graded plate band. This kind 
of plates has tolerance-periodic microstructure on the microlevel in planes parallel to the plate midplane. 
Dynamic problems of plates of this kind are described by partial differential equations with highly 
oscillating, tolerance-periodic, non-continuous coefficients. Thus, there are proposed here two models 
describing these plates by equations with smooth, slowly-varying coefficients. As an example there are 
analyses of free vibration frequencies for thin functionally graded plate band clamped on both edges. Using 
the known Ritz method the frequencies are obtained in the framework of proposed two models – the 
tolerance model and the asymptotic model.  
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1. Introduction 

In this paper, free vibrations of thin functionally graded plate band with span L along the x1-axis are 
considered. These plate bands have the functionally graded structure on the macrolevel and on the 
microlevel their structure is tolerance-periodic in x1. The size of microstructure is determined by l (length 
of the cell), being very small compared to the plate span L. A fragment of the plate band is shown in Fig. 1.  

 

 
Fig. 1. A fragment of a thin functionally graded plate band 

One of the most frequently method used to describe the functionally graded structure is averaging 
approaches for macroscopically homogeneous structure, e.g. periodic. Some of these methods are presented 
in [1]. Between them it can be distinguished models based on the asymptotic homogenization, e.g. applied 
for thin periodic plates [2]. Various analytical and numerical models were also proposed and used for 
microheterogeneous structures, e.g.: for sandwich beams with variable properties of core [3]; for laminated 
composite plates [4, 5]; for composite bars with helical distribution of constituents [6]. Unfortunately, the 
effect of the microstructure size is neglected in the governing equations of them. 

The effect of the microstructure size can be taken into account using the tolerance averaging technique 
[7, 8]. This method makes it possible to investigate various dynamical, stability and thermoelastic problems 
for periodic structures, e.g.: vibrations of medium thickness plates [9]; static problems of thin plates with 
moderately large deflections [10]; vibrations of thin periodic plates resting on an elastic periodic foundation 
[11]; stability of thin cylindrical shells [12]; the geometrically nonlinear dynamics of periodic beams [13]. 
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The tolerance modelling can be also applied to consider various problems of thermomechanics for 
functionally graded structures, e.g. for dynamic and stability problems of thin transversally graded plates 
with microstructure size bigger than the plate thickness [14, 15, 16]; for thin functionally graded plates with 
the microstructure size of an order of the plate thickness [17]; for heat distribution of composite cylindrical 
conductors having non-uniform microstructure [18]; for problems of thermoelasticity in transversally 
graded laminates [19]; dynamics of thin functionally graded microstructured shells [20-22]. 

The aim of this work is to apply the tolerance model and the asymptotic model to present the free 
vibration frequencies of thin plate band with tolerance-periodic microstructure in planes parallel to the 
midplane, which is clamped on the both edges. 

2. Equations 

Let us denote x = x1, z = x3, x ∈ [0, L],  z ∈ [‒d/2, d/2], where d is a constant plate thickness. It is assumed that 
the considerations are independent of the x2-coordinate. The plate band is described by Ω, Ω=(0, L), with 
“the basic cell” Δ≡[‒l/2, l/2] in the interval Ω, where l is the cell length, satisfying conditions d << l << L. The 
plate band is made of two elastic, isotropic materials, perfectly bonded across interfaces. The materials are 
characterised by Poisson’s ratios v′, v″, Young’s moduli E′, E″ and mass densities ρ′, ρ″. The plate material 
structure can be treated as functionally graded in the x-axis direction if it is assumed: E′ ≠ E″ and ρ′ ≠ ρ″. 
The plate band properties – the mass density μ(x), the rotational inertia ϑ(x)  and the bending stiffness B(x) 
– are described by tolerance-periodic functions in x 

𝜇(𝑥) ≡ 𝑑𝜌(𝑥) 𝜗(𝑥) ≡
𝑑3

12
 𝜌(𝑥) 𝐵(𝑥) ≡

𝑑3

12(1−𝑣2)
 𝐸(𝑥). (1) 

Let ∂ denote the derivative with respect to x, and w(x, t) be deflection of the plate band (x ∈ Ω, t ∈ (t0, t1)). 
Using the Kirchhoff plate theory, free vibrations of thin functionally graded plate band can be described by 
the partial differential equation of the fourth order with respect to the deflection w 

𝜕𝜕(𝐵𝜕𝜕𝑤) + 𝜇𝑤̈ − 𝜕(𝜗𝜕𝑤̈) = 0 (2) 

with highly-oscillating, non-continuous, tolerance-periodic coefficients. 
Following the books by [8, 23] the fundamental modelling assumptions can be formulated. The first 

assumption is the micro-macro decomposition in which the deflection w appears in the form 

𝑤(𝑥, 𝑡) = 𝑊(𝑥, 𝑡) + ℎ𝐴(𝑥)𝑉𝐴(𝑥, 𝑡)                𝐴 = 1, … , 𝑁,                𝑥 ∈ Ω, (3) 

where W (∙, t), VA (∙, t) ∈ SV2ξ (Ω, Δ) (for every t) are the basic kinematic unknows called the macrodeflection 
and the fluctuation amplitudes, respectively, being slowly-varying functions in x (cf. [8, 23]); and the known 
fluctuation shape functions hA(∙) ∈ FS2ξ (Ω, Δ). 

The second modelling assumption is the tolerance averaging approximation, where the terms of an 
order of O(ξ) are treated as negligibly small in the course of modelling. 

The modelling procedure of tolerance technique was shown in [8, 23]. The first step of this procedure is 
the formulation of the action functional 

𝒜(𝑤(∙)) = ∫ ∫ ℒ(𝑦, 𝜕𝜕𝑤(𝑦, 𝑡), 𝜕𝑤(𝑦, 𝑡), 𝑤̇(𝑦, 𝑡), 𝑤(𝑦, 𝑡))𝑑𝑦𝑑𝑡 ,̇
𝑡1

𝑡0Ω

 (4) 

where the lagrangean ℒ is given by 

ℒ =
1

2
(𝜇𝑤̇𝑤̇ + 𝜗𝜕𝑤̇𝜕𝑤̇ − 𝐵𝜕𝜕𝑤𝜕𝜕𝑤). (5) 

The next step is substituting micro-macro decomposition (3) into lagrangean (5). Using the tolerance 
averaging approximation, the tolerance averaged lagrangean is obtained in form 

〈ℒℎ〉 = −
1

2
{(〈𝐵〉𝜕𝜕𝑊 + 2〈𝐵𝜕𝜕ℎ𝐵〉𝑉𝐵)𝜕𝜕𝑊 + 〈𝜗〉𝜕𝑊̇𝜕𝑊̇ + 〈𝐵𝜕𝜕ℎ𝐴𝜕𝜕ℎ𝐵〉𝑉𝐴𝑉𝐵 − 〈𝜇〉𝑊̇𝑊 +̇

+ (〈𝜗𝜕ℎ𝐴𝜕ℎ𝐵〉 − 〈𝜇ℎ𝐴ℎ𝐵〉)𝑉̇𝐴𝑉̇𝐵}, 
(6) 

where the macrodeflection W and the fluctuation amplitudes VA, A = 1, …, N, are new basic kinematic 
unknows. The known fluctuation shape functions hA are introduced in micro-macro decomposition (3). 
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From the principle of stationary action applied to the averaged functional 𝒜h with lagrangean (6), after 
some mathematical manipulations, the following system of equations for W and VA is obtained 

𝜕𝜕(〈𝐵〉𝜕𝜕𝑊 + 〈𝐵𝜕𝜕ℎ𝐵〉𝑉𝐵) + 〈𝜇〉𝑊̈ − 〈𝜗〉𝜕𝜕𝑊̈ = 0

〈𝐵𝜕𝜕ℎ𝐴〉𝜕𝜕𝑊 + 〈𝐵𝜕𝜕ℎ𝐴𝜕𝜕ℎ𝐵〉𝑉𝐵 + (〈𝜇ℎ𝐴ℎ𝐵〉 + 〈𝜗𝜕ℎ𝐴𝜕ℎ𝐵〉) 𝑉̈𝐵 = 0.
 (7) 

The Equations (7) are system of N+1 differential equations of the tolerance model of thin functionally 
graded plate bands. The coefficients of these equations are slowly-varying functions in x. The underlined 
terms in Equations (7) depend on the microstructure parameter l. Thus this model makes it possible to take 
into account the effect of the microstructure size on the free vibrations of thin plates. 
After neglecting underline terms in (72) the following equation for fluctuation amplitudes VA can be written 

𝑉𝐴 = −〈𝐵𝜕𝜕ℎ𝐴〉𝜕𝜕𝑊(〈𝐵𝜕𝜕ℎ𝐴𝜕𝜕ℎ𝐵〉)−1 (8) 

and after the substituting (8) into (71) the equation for W is derived 

𝜕𝜕((〈𝐵〉 − 〈𝐵𝜕𝜕ℎ𝐴〉〈𝐵𝜕𝜕ℎ𝐵〉(〈𝐵𝜕𝜕ℎ𝐴𝜕𝜕ℎ𝐵〉)−1)𝜕𝜕𝑊) + 〈𝜇〉𝑊̈ − 〈𝜗〉𝜕𝜕𝑊̈ = 0. (9) 

The Equations (8, 9) together with micro-macro decomposition (3) represent the asymptotic model of thin 
functionally graded plate bands. This model neglects the effect of microstructure size.  

3. Example: free vibrations of plate band 

3.1. Introduction 

Free vibrations of a plate band clamped on both edges with span L along x-axis are considered. The 
properties of the plate band are 

𝜌(∙, 𝑧), 𝐸(∙, 𝑧) = {
𝜌′, 𝐸′            𝑓𝑜𝑟 𝑧 ∈ (

1

2
(1 − 𝛾(𝑥))𝑙,

1

2
(1 + 𝛾(𝑥))𝑙)

𝜌′′, 𝐸′′ 𝑓𝑜𝑟 𝑧 ∈ [0,
1

2
(1 − 𝛾(𝑥))𝑙] ∪ [

1

2
(1 + 𝛾(𝑥))𝑙, 𝑙]

 (10) 

with a distribution function of material properties γ(x). 
The considerations are restricted only to one fluctuation shape function, A = N = 1. Denote h≡h1, V≡V1, and 
the micro-macro decomposition of plate band deflection w(x, t) has the form 

𝑤(𝑥, 𝑡) = 𝑊(𝑥, 𝑡) + ℎ(𝑥)𝑉(𝑥, 𝑡) (11) 

with the slowly-varying functions W(∙, t), V(∙, t) for every t ∈ (t0, t1), and the fluctuation shape function h(∙). 

 
Fig. 2. “Basic cell” 

The cell structure of the functionally graded plate band is shown in Fig. 2.  The periodic approximation of 
the fluctuation shape function h(x) has the form 

ℎ̃(𝑥, 𝑧) = 𝑙2 [cos (
2𝜋𝑧

𝑙
) + 𝑐(𝑥)] 𝑧 ∈ Δ(𝑧) 𝑧 ∈ Ω. (12) 

The parameter c(x) is a slowly-varying function in x and determined by 〈𝜇̃ℎ̃〉 = 0 

𝑐 = 𝑐(𝑥) = {𝑠𝑖𝑛[𝜋𝛾̃(𝑥)](𝜌′ − 𝜌′′)}{𝜋{𝜌′𝛾̃(𝑥) + 𝜌′′[1 − 𝛾̃(𝑥)]}}
−1

, (13) 
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where 𝛾̃(𝑥) is the periodic approximation of the distribution function of the material properties γ(x). The 
parameter c(x) is slowly-varying function of x and is treated as constant in the calculations of derivatives 

𝜕ℎ̃, 𝜕𝜕ℎ̃. 

3.2. The Ritz method 

Equations (7) and (9) have slowly-varying coefficients and it is difficult to find an analytical solutions of 
them. Therefore the known Ritz method can be used to derive approximate formulas for free vibrations 
frequencies.  In order to obtain these formulas, it is necessary to determinate the relationship of maximal 
strain energy ℇmax and the maximal kinetic energy 𝒦max. 
Solutions of Equations (7) and Equation (9) are assumed in the form satisfying the boundary conditions for 
the plate band clamped on both edges 

𝑊(𝑥, 𝑡) = 𝐴𝑊 (𝑈(𝛼𝑥) −
cosh(𝛼𝐿) − cos(𝛼𝐿)

sinh(𝛼𝐿) − sin(𝛼𝐿)
𝑉(𝛼𝑥)) cos(𝜔𝑡)

𝑉(𝑥, 𝑡) = 𝐴𝑉 (𝑈(𝛼𝑥) −
cosh(𝛼𝐿) − cos(𝛼𝐿)

sinh(𝛼𝐿) − sin(𝛼𝐿)
𝑉(𝛼𝑥)) cos(𝜔𝑡)

 (14) 

with the wave number α; the free vibrations frequency ω; the Krylow-Prager functions U(αx) and V(αx), 
U(αx)=0.5[cosh(αx) – cos(αx)], V(αx)=0.5[sinh(αx) – sin(αx)]; the amplitude for macrodeflection AW; the 
amplitude for the fluctuation amplitude AV. 
Introducing denotations 

𝐵̆ =
𝑑3

12(1 − 𝜈2)
∫ {𝐸′′[1 − 𝛾̃(𝑥)] + 𝛾̃(𝑥)𝐸′} [𝑈(𝛼𝑥) −

cosh(𝛼𝐿) − cos(𝛼𝐿)

sinh(𝛼𝐿) − sin(𝛼𝐿)
𝑉(𝛼𝑥)]

2

𝑑𝑥
𝐿

0

𝐵̅ =
𝜋𝑑3

3(1 − 𝜈2)
(𝐸′ − 𝐸′′) ∫ sin(𝜋𝛾̃(𝑥)) [𝑈(𝛼𝑥) −

cosh(𝛼𝐿) − cos(𝛼𝐿)

sinh(𝛼𝐿) − sin(𝛼𝐿)
𝑉(𝛼𝑥)]

2

𝑑𝑥  
𝐿

0

𝐵̂ =
(𝜋𝑑)3

3(1 − 𝜈2)
∫ {(𝐸′ − 𝐸′′)[2𝜋𝛾̃(𝑥) + sin(2𝜋𝛾̃(𝑥))] + 2𝜋𝐸′′} ∙

𝐿

0

 

                                                ∙ [𝑈(𝛼𝑥) −
cosh(𝛼𝐿) − cos(𝛼𝐿)

sinh(𝛼𝐿) − sin(𝛼𝐿)
𝑉(𝛼𝑥)]

2

𝑑𝑥

𝜇̆ = 𝑑 ∫ {[1 − 𝛾̃(𝑥)]𝜌′′ + 𝛾̃(𝑥)𝜌′} [𝑈(𝛼𝑥) −
cosh(𝛼𝐿) − cos(𝛼𝐿)

sinh(𝛼𝐿) − sin(𝛼𝐿)
𝑉(𝛼𝑥)]

2

𝑑𝑥
𝐿

0

𝜇̅ =
𝑑

4𝜋
∫ {(𝜌′ − 𝜌′′)[2𝜋𝛾̃(𝑥) + sin(2𝜋𝛾̃(𝑥))] + 2𝜋𝜌′′} [𝑈(𝛼𝑥) −

cosh(𝛼𝐿) − cos(𝛼𝐿)

sinh(𝛼𝐿) − sin(𝛼𝐿)
𝑉(𝛼𝑥)]

2

𝑑𝑥
𝐿

0

       +
𝑑

4
(𝜌′ − 𝜌′′) ∫ 𝑐(𝑥)[𝜋𝑐(𝑥)𝛾̃(𝑥) − 2 sin(𝜋𝛾̃(𝑥))]

𝐿

0

[𝑈(𝛼𝑥) −
cosh(𝛼𝐿) − cos(𝛼𝐿)

sinh(𝛼𝐿) − sin(𝛼𝐿)
𝑉(𝛼𝑥)]

2

𝑑𝑥

   +𝑑𝜌′′ ∫[𝑐(𝑥)]2

𝐿

0

[𝑈(𝛼𝑥) −
cosh(𝛼𝐿) − cos(𝛼𝐿)

sinh(𝛼𝐿) − sin(𝛼𝐿)
𝑉(𝛼𝑥)]

2

𝑑𝑥   

𝜗̆ =
𝑑3

12
∫ {[1 − 𝛾̃(𝑥)]𝜌′′ + 𝛾̃(𝑥)𝜌′} [𝑈(𝛼𝑥) −

cosh(𝛼𝐿) − cos(𝛼𝐿)

sinh(𝛼𝐿) − sin(𝛼𝐿)
𝑉(𝛼𝑥)]

2

𝑑𝑥
𝐿

0

 

𝜗̅ =
𝜋𝑑3

12
∫ {(𝜌′ − 𝜌′′)[2𝜋𝛾̃(𝑥) − sin(2𝜋𝛾̃(𝑥))] + 2𝜋𝜌′′} [𝑈(𝛼𝑥) −

cosh(𝛼𝐿) − cos(𝛼𝐿)

sinh(𝛼𝐿) − sin(𝛼𝐿)
𝑉(𝛼𝑥)]

2

𝑑𝑥
𝐿

0

 (15) 

and using (14), the formulas of the maximum strain energies and kinetic energies of the tolerance model 
take the form 

ℰ𝑚𝑎𝑥
𝑇𝑀 =

1

2
 (𝐵̆𝐴𝑊

2 𝛼4 + 2𝐵̅𝐴𝑊𝐴𝑉𝛼2 + 𝐵̂𝐴𝑉
2 ), 𝒦𝑚𝑎𝑥

𝑇𝑀 =
1

2
 [(𝜇̆ + 𝜗̆𝛼2)𝐴𝑊

2 + 𝑙2(𝜇̅𝑙2 + 𝜗̅)𝐴𝑉
2 ]𝜔2. (16) 
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The conditions of the Ritz method have the form 

𝜕(ℰ𝑚𝑎𝑥 − 𝒦𝑚𝑎𝑥)

𝜕𝐴𝑤

= 0,
𝜕(ℰ𝑚𝑎𝑥 − 𝒦𝑚𝑎𝑥)

𝜕𝐴𝑉

= 0. (17) 

Using (17) to relations (16), after some manipulations, the following formulas are obtained 

 

(𝜔−,+)
2

=
𝛼4𝑙2(𝜇̅𝑙2 + 𝜗̅)𝐵̆ + (𝜇̆ + 𝜗̆𝛼2)𝐵̂

2𝑙2(𝜇̅𝑙2 + 𝜗̅)(𝜇̆ + 𝜗̆𝛼2)
+                                                                                

∓
√[𝛼4𝑙2(𝜇̅𝑙2 + 𝜗̅)𝐵̆ − (𝜇̆ + 𝜗̆𝛼2)𝐵̂]

2
+ 4𝛼4𝑙2(𝜇̅𝑙2 + 𝜗̅)(𝜇̆ + 𝜗̆𝛼2)𝐵̅2

2𝑙2(𝜇̅𝑙2 + 𝜗̅)(𝜇̆ + 𝜗̆𝛼2)
,

 (18) 

for the lower 𝜔− and the higher 𝜔 +  free vibrations frequencies of the tolerance model. 
For the asymptotic model, the expressions for maximum energies are written as 

ℰ𝑚𝑎𝑥
𝐴𝑀 =

1

2
(𝐵̆𝐴𝑊

2 𝛼4 + 2𝐵̅𝐴𝑊𝐴𝑉𝛼2 + 𝐵̂𝐴𝑉
2 ), 𝒦𝑚𝑎𝑥

𝑇𝑀 =
1

2
(𝜇̆ + 𝜗̆𝛼2)𝐴𝑊

2 𝜔2. (19) 

Applying conditions (17) to equations (19), after some manipulations, the following formula is obtained 

𝜔2 =
𝐵̆𝐵̂ − 𝐵̅2

(𝜇̆ + 𝜗̆𝛼2)𝐵̂
𝛼4 (20) 

of the lower ω free vibrations frequency. 

3.3. Results 

Calculations are made for the following distribution functions of the material properties γ(x) 

𝛾̃(𝑥) = sin2 (
𝜋𝑥

𝐿
),    𝛾̃(𝑥) = cos2 (

𝜋𝑥

𝐿
),    𝛾̃(𝑥) = (

𝑥

𝐿
)

2

,    𝛾̃(𝑥) = sin (
𝜋𝑥

𝐿
),    𝛾̃(𝑥) = 0.5.  (21) 

Let us introduce dimensionless of lower frequency parameters for the tolerance model and the asymptotic 
model, respectively 

Ω−
2 =

12(1 − 𝜈2)𝜌′

𝐸′
𝐿2(𝜔−)2,     Ω2 =

12(1 − 𝜈2)𝜌′

𝐸′
𝐿2𝜔2, (22) 

where ω_ , ω are the free vibration frequencies determined by Equations (181) and (20). 
Results of calculations for the plate band clamped on both edges are shown in Figs. 3 – 7. Calculations 

are made for Poisson’s ratio ν = 0.3, wave number α = 4.73 (which corresponds to the first mode of free 
vibrations of the homogeneous plate band clamped on both edges), ratio of plate thickness d/l = 0.1. 
Figures present plots of lower frequency parameters for different distribution functions of material 
properties versus ratio of Young’s modulus E″/E′ or ratio mass density ρ″/ρ′. 
 

(a) (b) 

  

Fig. 3. Plots of the frequency parameters Ω_ and Ω for 𝛾̃(𝑥) = sin2 (
𝜋𝑥

𝐿
) ,  

depending on parameters: a) E″/E′,  b) ρ″/ρ′.  
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(a) (b) 

 
 

Fig. 4. Plots of frequency parameters Ω_ and Ω for 𝛾̃(𝑥) = cos2 (
𝜋𝑥

𝐿
),  

depending on parameters: a) E″/E′, b) ρ″/ρ′.  

 
(a) (b) 

  

Fig. 5. Plots of the frequency parameters Ω_ and Ω for  𝛾̃(𝑥) = (
𝑥

𝐿
)

2

,  

depending on parameters: a) E″/E′, b) ρ″/ρ′.  

 
(a) (b) 

  

Fig. 6. Plots of the frequency parameters Ω_ and Ω for  𝛾̃(𝑥) = sin (
𝜋𝑥

𝐿
),  

depending on parameters: a) E″/E′, b) ρ″/ρ′.  
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(a) (b) 

  

Fig. 7. Plots of the frequency parameters Ω_ and Ω for  𝛾̃(𝑥) = 0.5  
depending on parameters: a) E″/E′, b) ρ″/ρ′.  

4. Conclusions  

In this note the main aim is to shown an application of the tolerance and the asymptotic models to analyse 
free vibrations of thin microstructured functionally graded plate bands clamped of both edges. 

The tolerance model is obtained using the tolerance modelling method to the known differential 
equations of thin microstructured functionally graded plate bands. This method leads from the differential 
equation with non-continuous, highly oscillating and tolerance-periodic coefficients to the system of 
differential equations with slowly-varying coefficients. The tolerance model makes it possible to describe 
the effect of the microstructure size on the overall behaviour of these plates. The asymptotic model is 
formulated using the asymptotic modelling procedure, shown in [8, 23], or can be also obtained from the 
tolerance model equations by neglecting suitable terms. However, the asymptotic model describes only the 
behaviour of these plates on the macrolevel. 

In the example for the plate band clamped of both edges free vibrations frequencies have been analysed 
for various distribution functions of material properties γ(x) and different ratios of material properties 
E″/E′ and ρ″/ρ′. 
Analysing results of this example it can be observed that: 
• lower free vibrations frequencies can be analysed using the both presented models – the tolerance and 

the asymptotic, 
• the frequencies of lower free vibrations decrease with increasing of ratio ρ″/ρ′ and they increase with 

increasing of ratio E″/E′, 
• using the different distribution functions of the material properties γ(x) it can be made microstructure 

plates having lower fundamental free vibrations frequencies which are smaller or higher than these 
frequencies for the homogenous plate made of the stronger material for different pairs of ratios (E″/E′, 
ρ″/ρ′). 

Hence, the tolerance model can be used as a tool to analyse various problems of vibration of thin functionally 
graded plates with microstructure, which are heterogeneous in planes parallel to the midplane. It should be 
emphasized that the tolerance model allows to analyse not only lower order fundamental vibrations 
corresponding to the macrostructure, but also higher order vibrations corresponding to the microstructure. 
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