Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
We develop potential theory of Schrödinger operators based on fractional Laplacian on Euclidean spaces of arbitrary dimension. We focus on questions related to gaugeability and existence of q-harmonic functions. Results are obtained by analyzing properties of a symmetric α-stable Lévy process on Rd, including the recurrent case. We provide some relevant techniques and apply them to give explicit examples of gauge functions for a general class of domains.
Czasopismo
Rocznik
Tom
Strony
293--335
Opis fizyczny
Bibliogr. 17 poz.
Twórcy
autor
- Institute of Mathematics, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
autor
- Institute of Mathematics, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
Bibliografia
- [1] R. M. Blumenthal and R. K. Getоor, Markov Processes and Their Potential Theory, Pure Appl. Math., Academic Press, New York 1968.
- [2] R. M. Blumenthal, R. K. Getoor and D. B. Ray, On the distribution of first hits for the symmetric stable processes, Trans. Amer. Math. Soc. 99 (1961), pp. 540-554.
- [3] K. Bogdan, The boundary Harnack principle for the fractional Laplacian, Studia Math. 123 (1) (1997), pp. 43-80.
- [4] K, Bogdan, Representation of a-harmonic functions in Lipschitz domains, Hiroshima Math. J. 29 (1999), pp. 227-243.
- [5] K. Bogdan, Sharp estimates for the Green function in Lipschitz domains, J. Math. Anal. Appl. 243 (2000), pp. 326-337.
- [6] K. Bogdan and T. Byczkowski, Potential theory for the α-stable Schrödinger operator on bounded Lipschitz domains, Studia Math. 133 (1) (1999), pp. 53-92.
- [7] Z.-Q. Chen, Multidimensional symmetric stable processes, Korean J. Comput. Appl. Math. 6 (2) (1999), pp. 227-266.
- [8] Z.-Q. Chen and R. Song, Martin boundary and integral representation for harmonic functions of symmetric stable processes, J. Funct. Anal. 159 (1) (1998), pp. 267-294.
- [9] K. L. Chung, Green's function for a ball, in: Seminar on Stochastic Processes, 1986, Progr. Probab. Statist. 13, Birkhäuser, Boston 1987, pp. 1-13.
- [10] K. L. Chung and Z. Zhao, From Brownian motion to Schrödinger’s equation, Springer, New York 1995.
- [11] M. Cranston, E. Fabes and Z. Zhao, Conditional gauge and potential theory for the Schrödinger operator, Trans. Amer. Math. Soc. 307 (1) (1988), pp. 171-194.
- [12] N. Ikeda and S. Watanabe, On some relations between the harmonic measure and the Lévy measure for a certain class of Markov processes, J, Math. Kyoto Univ. 2 (1) (1962), pp. 79-95.
- [13] T. Kulczycki, Properties of Green function of symmetric stable processes, Probab. Math. Statist. 17 (2) (1997), pp. 339-364.
- [14] T. Kulczycki, Intrinsic ultracontractivity for symmetric stable processes, Bull. Polish Acad. Sci. Math. 46 (3) (1998), pp. 325-334.
- [15] N. S. Landkof, Foundations of Modern Potential Theory, Springer, New York 1972.
- [16] D. B. Ray, Stable processes with an absorbing barrier, Trans. Amer. Math. Soc. 89 (1958), pp. 16-24. -
- [17] Z. Zhao, A probabilistic principle and generalized Schrödinger perturbation, J. Funct. Anal. 101 (1) (1991), pp. 162-176.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4c64004f-6ad4-4ceb-9e93-3fcfde1697ff