PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analyzing frequency response analysis experimentally for bone healing detection: examining the potential of vibrational evaluations

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Assessment of bone healing is essential for efficient orthopedic treatment. This work investigates the feasibility of assessing frequency response experimentally for bone healing detection, with a particular emphasis on the use of vibrational assessments. Detailed experimental studies were carried out to determine the ability of frequency response analysis to assess bone healing. Mechanical excitation was delivered to cracked bone samples at various frequencies, and the vibrational responses of the displacement and accelerations were measured. The experimental setting includes testing five samples, to cover a wide range of possibilities. The obtained vibrational, such phase, magnitude, and coherence, were examined to find common patterns and changes linked with the healing process. The results showed that frequency response analysis has the potential to identify bone healing, as unique vibrational responses were seen in healed samples under cyclic load for different turns (0, 1000, 2000, 3000, and 4000). The findings demonstrate the sensitivity of vibrational evaluations in capturing the mechanical properties and healing condition of bone tissue. Furthermore, the presence of cracks impacts both structural integrity and natural frequency. Natural frequency decreases as the number of cycles increases. The highest frequency reduction occurred at the first mode shape and maximum cycle number, indicating considerable fracture behaviour changes. Natural frequency can be used to assess bone health; higher stiffness and frequency are associated with smaller crack size.
Czasopismo
Rocznik
Strony
art. no. 2024315
Opis fizyczny
Bibliogr. 21 poz., rys., tab.
Twórcy
  • Mechanical Engineering Department, College of Engineering, University of Babylon, 51001 Babylon, Iraq
  • Mechanical Engineering Department, College of Engineering, University of Babylon, 51001 Babylon, Iraq
  • Mechanical Engineering Department, College of Engineering, University of Babylon, 51001 Babylon, Iraq
Bibliografia
  • 1. Anderson WD, Wilson SLM, Holdsworth DW. Development of a wireless telemetry sensor device to measure load and deformation in orthopaedic applications. Sensors 2020; 20(23): 6772. https://doi.org/10.3390/s20236772.
  • 2. Joutsen A, Hautalahti J, Jaatinen E, Goebeler S, Paldanius A, Viik J, i in. A device for measuring sternal bone connectivity using vibration analysis techniques. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine 2020; 234(1): 81-90. https://doi.org/10.1177/0954411919884802.
  • 3. Sorriento A, Chiurazzi M, Fabbri L, Scaglione M, Dario P, Ciuti G. A novel capacitive measurement device for longitudinal monitoring of bone fracture healing. Sensors 2021; 21(19): 6694. https://doi.org/10.3390/s21196694.
  • 4. Zou K, Chen Z, Yuan X, Shen X, Wang M, Fu H. A review of uncertainty estimation and its application in medical imaging. Meta-Radiology 2023; 1(1): 100003. https://doi.org/10.1016/j.metrad.2023.100003.
  • 5. Song S, Cheng X, Li T, Shi M, Zheng G, Liu H. Experimental study of bone drilling by Kirschner wire. Medical Engineering & Physics 2022; 106: 103835. https://doi.org/10.1016/j.medengphy.2022.103835.
  • 6. Arpinar P, Simsek B, Sezgin OC, Birlik G, Korkusuz F. Correlation between mechanical vibration analysis and dual energy X-ray absorptiometry (DXA) in the measurement of in vivo human tibial bone strength. Technology and Health Care: Official Journal of the European Society for Engineering and Medicine 2005; 13(2): 107-13.
  • 7. Christopoulou GE, Stavropoulou A, Anastassopoulos G, Panteliou SD, Papadaki E, Karamanos NK, i in. Evaluation of modal damping factor as a diagnostic tool for osteoporosis and its relation with serum osteocalcin and collagen I N-telopeptide for monitoring the efficacy of alendronate in ovariectomized rats. Journal of Pharmaceutical and Biomedical Analysis 2006; 41(3): 891-7. https://doi.org/10.1016/j.jpba.2005.12.038.
  • 8. Kawchuk GN, Decker C, Dolan R, Fernando N, Carey J. The feasibility of vibration as a tool to assess spinal integrity. Journal of Biomechanics 2008; 41(10): 2319-23. https://doi.org/10.1016/j.jbiomech.2008.04.023.
  • 9. Bediz B, Nevzat Özgüven H, Korkusuz F. Vibration measurements predict the mechanical properties of human tibia. Clinical Biomechanics 2010; 25(4): 365-71. https://doi.org/10.1016/j.clinbiomech.2010.01.002.
  • 10. van Engelen SJPM, Ellenbroek MHM, van Royen BJ, de Boer A, van Dieën JH. Validation of vibration testing for the assessment of the mechanical properties of human lumbar motion segments. Journal of Biomechanics 2012; 45(10): 1753-8. https://doi.org/10.1016/j.jbiomech.2012.05.009.
  • 11. Campoli G, Baka N, Kaptein BL, Valstar ER, Zachow S, Weinans H, i in. Relationship between the shape and density distribution of the femur and its natural frequencies of vibration. Journal of Biomechanics 2014; 47(13): 3334-43. https://doi.org/10.1016/j.jbiomech.2014.08.008.
  • 12. Mattei L, Longo A, Di Puccio F, Ciulli E, Marchetti S. vibration testing procedures for bone stiffness assessment in fractures treated with external fixation. Annals of Biomedical Engineering 2017; 45(4): 1111-21. https://doi.org/10.1007/s10439-016-1769-1.
  • 13. Di Puccio F, Mattei L, Longo A, Marchetti S. Fracture healing assessment based on impact testing: in vitro simulation and monitoring of the healing process of a tibial fracture with external fixator. International Journal of Applied Mechanics 2017; 09. https://doi.org/10.1142/S1758825117500983.
  • 14. Di Puccio F, Mattei L, Longo A, Marchetti S. Investigation on the feasibility of bone stiffness assessment from in-vivo tests. 2017.
  • 15. Mattei L, Di Puccio F, Marchetti S. In vivo impact testing on a lengthened femur with external fixation: a future option for the non-invasive monitoring of fracture healing? Journal of the Royal Society, Interface 2018; 15(142): 20180068. https://doi.org/10.1098/rsif.2018.0068.
  • 16. Verdenelli L, Rossetti R, Chiariotti P, Martarelli M, Scalise L. Experimental and numerical dynamic characterization of a human tibia. Journal of Physics: Conference Series 2018; 1149(1): 012029. https://doi.org/10.1088/1742-6596/1149/1/012029.
  • 17. Mattei L, Di Puccio F. Marchetti S. Fracture healing monitoring by impact tests: single case study of a fractured tibia with external fixator. IEEE Journal of Translational Engineering in Health and Medicine 2019; 7: 2100206. https://doi.org/10.1109/JTEHM.2019.2901455.
  • 18. Chiu WK, Vien BS, Russ M, Fitzgerald M. Towards a non-invasive technique for healing assessment of internally fixated femur. Sensors (Basel, Switzerland) 2019; 19(4): 857. https://doi.org/10.3390/s19040857.
  • 19. Mattei L, Di Fonzo M, Marchetti S, Di Puccio F. A quantitative and non-invasive vibrational method to assess bone fracture healing: a clinical case study. International Biomechanics; 8(1): 1-13. https://doi.org/10.1080/23335432.2021.1874528.
  • 20. Vien BS, Chiu WK, Russ M, Fitzgerald M. Modal frequencies associations with musculoskeletal components of human legs for extracorporeal bone healing assessment based on a vibration analysis approach. Sensors 2022; 22(2): 670. https://doi.org/10.3390/s22020670.
  • 21. Mobark HFH, Fadhel EZ, Hussein MT, Mohamad B. Experimental study of nano-composite materials on vibration responses. Diagnostyka 2023; 24(3): 1-13. https://doi.org/10.29354/diag/171710.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4c62266b-af50-4181-affc-c2502032aa68
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.