PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Towards digital twin-driven performance evaluation methodology of FMS

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents a method of automated modelling and performance evaluation of concurrent production flows carried out in Flexible Manufacturing Systems. The method allows for quick assessment of various variants of such systems, considering their structure and the organization of production flow of possible ways of their implementation. Its essence is the conditions imposed on the designed model, limiting the space of possible variants of the production flow only to deadlock-free variants. The practical usefulness of the model implemented in the proposed method illustrates the example, which describes the simultaneous assessment of alternative variants of the flexible machining module's structure and the planned multi-assortment production. The ability of the method to focus on feasible solutions offers attractive perspectives for guiding the Digital Twin-like scenario in situations caused by the need to change the production flow.
Słowa kluczowe
Rocznik
Strony
5--18
Opis fizyczny
Bibliogr. 37 poz., fig., tab.
Twórcy
  • Faculty of Electronics and Computer Science, Koszalin University of Technology, Poland
  • Faculty of Information and Communication Technology, Wrocław University of Science and Technology, Poland
autor
  • Department of Information Systems, Kielce University of Technology, Kielce, Poland
  • Faculty of Electronics and Computer Science, Koszalin University of Technology, Poland
Bibliografia
  • [1] Alexopoulos, K., Anagiannis, I., Nikolakis, N., & Chryssolouris, G. (2022). A quantitative approach to resilience in manufacturing systems. International Journal of Production Research, 60(13), 4342–4360.
  • [2] Bakar, B. A., Henry, R. M., & Ali, M. (1991). An alternative approach in batch process control implementation using hierarchical Petri nets, World Scientific. Proc. of the International Conference on Computer Integrated Manufacturing (pp. 171–174).
  • [3] Banaszak, Z. (1992). Synchronisation of robots in flexible assembly systems. Archiwum Budowy Maszyn, 39(1–2), 117–133.
  • [4] Banaszak, Z., Skolud, B., & Zaremba, M. B. (2003). Computer-aided prototyping of production flows for virtual enterprise. Journal of Intelligent Manufacturing, 14, 83–106.
  • [5] Bocewicz, G., Wójcik, R., Witczak, M., & Banaszak, Z. (2022). Petri Net Approach to Automated Modelling and Performance Evaluation for Robotic Assembly Systems. 2022 26th International Conference on Methods and Models in Automation and Robotics (MMAR) (pp. 306–311). IEEE. https://doi.org/10.1109/MMAR55195.2022.9874291
  • [6] Bujari, A., Calvio, A., Foschini, L., Sabbioni, A., & Corradi, A. (2021). A Digital Twin Decision Support System for the Urban Facility Management Process. Sensors, 21(24), 8460. https://doi.org/10.3390/s21248460
  • [7] Claes, D., & Tuyls, K. (2018). Multi robot collision avoidance in a shared workspace. Autonomous Robots, 42, 1749–1770. https://doi.org/10.1007/s10514-018-9726-5
  • [8] Coito, T., Faria, P., Martins, M. S. E., Firme, B., Vieira, S. M., Figueiredo, J., & Sousa, J. M. C. (2022). Digital Twin of a Flexible Manufacturing System for Solutions Preparation. Automation, 3(1), 153–175. https://doi.org/10.3390/automation3010008
  • [9] David, J., Lobov, A., & Lanz, M. (2018). Leveraging Digital Twins for Assisted Learning of Flexible Manufacturing Systems. 2018 IEEE 16th International Conference on Industrial Informatics (INDIN) (pp. 529-535). IEEE. https://doi.org/10.1109/INDIN.2018.8472083
  • [10] Hatono, I., Katoh, N., Yamagata, K., & Tamura, H. (1989). Modelling of FMS under uncertainty using stochastic Petri Nets. Proc. of the 3rd International Workshop on Petri nets and performance models (pp. 122–130).
  • [11] He, Z., Zhang, R., Ran, N., & Gu, C. (2022). Path Planning of Multi-Type Robot Systems with Time Windows Based on Timed Colored Petri Nets. Applied Science, 12(14), 6878. https://doi.org/10.3390/app12146878
  • [12] Heiner, M. (1992). Petri net based software validation (prospects and limits), Technical report No. TR-92-022. International Computer Science Institute.
  • [13] Janardhanan, M. N., Li, Z., Bocewicz, G., Banaszak, Z., & Nielsen, P. (2019). Metaheuristic Algorithms for balancing robotic assembly lines with sequence-dependent robot setup times. Applied Mathematical Modelling, 65, 256–270.
  • [14] Jensen, K. (1987). Computer tools for construction, modification and analysis of Petri nets. Lecture Notes on Computer Science (No. 255). Springer Verlag.
  • [15] Jonsson, P. (2000). An empirical taxonomy of advanced manufacturing technology. International Journal of Operations & Production Management, 20(12), 1446–1474.
  • [16] Laemmle, A., & Gust, S. (2019). Automatic layout generation of robotic production cells in a 3D manufacturing simulation environment. Procedia CIRP, 84, 316–321.
  • [17] Makris, S., Michalos, G., & Chryssolouris, G. (2012). Virtual Commissioning of an Assembly Cell with Cooperating Robots. Advances in Decision Sciences, 2012, 428060. https://doi.org/10.1155/2012/428060
  • [18] Manu, G., Kumar, V. M., Nagesh, H., Jagadeesh, D., & Gowtham, M. B. (2018). Flexible Manufacturing Systems (FMS): A Review. International Journal of Mechanical and Production Engineering Research and Development, 8(2), 323–336.
  • [19] Neto, A. A., Carrijoa B. S., Brock, J. G. R, Deschamps, F., & Lima, E. P. (2021). Digital twin-driven decision support system for opportunistic preventive maintenance scheduling in manufacturing. Procedia Manufacturing, 55, 439–446.
  • [20] Nielsen, L. D., Sung, I., & Nielsen, P. (2019). Convex Decomposition for a Coverage Path Planning for Autonomous Vehicles: Interior Extension of Edges. Sensors, 19(19), 4165. https://doi.org/10.3390/s19194165
  • [21] Nielsen, P., Michna, Z., & Do, N. A. D. (2014). An Empirical Investigation of Lead Time Distributions. Advances in Production Management Systems. Innovative and Knowledge-Based Production Management in a Global-Local World. APMS 2014. IFIP Advances in Information and Communication Technology (vol. 438). Springer. https://doi.org/10.1007/978-3-662-44739-0_53
  • [22] Patalas-Maliszewska, J., & Kłos, S. (2019). An Approach to Supporting the Selection of Maintenance Experts in the Context of Industry 4.0. Applied Sciences, 9(9), 1848. https://doi.org/10.3390/app9091848
  • [23] Rachamadugu, R., & Stecke, K. E. (1994). Classification and review of FMS scheduling procedures. Production Planning & Control, 5(1), 2–20. https://doi.org/10.1080/09537289408919468
  • [24] Recalde, L., Silva, M., Ezpeleta, J., & Teruel, E. (2022). Petri Nets and Manufacturing Systems: An Examples-Driven Tour. ACPN 2003. Lecture Notes in Computer Science (vol. 3098). Springer. https://doi.org/10.1007/978-3-540-27755-2_21
  • [25] Reisig, W. (1982). Petri nets. Springer Verlag.
  • [26] Reutenauer, Ch. (1988). The mathematics of Petri nets. Englewood Cliffs.
  • [27] Silva, E. B., Costa, M. G., Silva, M. F., & Pereira, F. H. (2012). Evaluation of Production Sequencing Rules in Job Shop and Flow Shop Environment through Computer Simulation. ICIEOM 2012 (no. 257).
  • [28] Sliwa, M., & Patalas-Maliszewska, J. (2016). A Strategic Knowledge Map for the Research and Development Department in a Manufacturing Company. Foundations of Management, 8(1), 151–166.
  • [29] Stączek, P., Pizoń, J., Danilczuk, W., & Gola, A. (2021). A digital twin approach for the improvement of an autonomous mobile robots (AMR's) operating environment – a case study. Sensors, 21(23), 7830. https://doi.org/10.3390/s21237830
  • [30] Świć, A., & Gola, A. (2013). Economic Analysis of Casing Parts Production in a Flexible Manufacturing System. Actual Problems of Economics, 141(3), 526–533.
  • [31] Vaisi, B. (2022). A review of optimization models and applications in robotic manufacturing systems: Industry 4.0 and beyond. Decision Analytics Journal, 2, 100031. https://doi.org/10.1016/j.dajour.2022.100031
  • [32] Van der Aalst, W. M. (1992). Timed coloured Petri nets and their application to logistics. Technische Universiteit Eindhoven.
  • [33] Viswandham, N., & Narahari, Y. (1992). Performance modelling of automated manufacturing systems. Prentice-Hall.
  • [34] Yang, B., & Hu, H. (2022). Maximally Permissive Deadlock and Livelock Avoidance for Automated Manufacturing Systems via Critical Distance. In IEEE Transactions on Automation Science and Engineering. IEEE. https://doi.org/10.1109/TASE.2021.3138169
  • [35] Zanchettin, A. M. (2021). Robust scheduling and dispatching rules for high-mix collaborative manufacturing systems. Flexible Services and Manufacturing Journal, 34, 293–316. https://doi.org/10.1007/s10696-021-09406-x
  • [36] Zhang, F., Bai, J., & Yang, D. (2022). Digital twin data-driven proactive job-shop scheduling strategy towards asymmetric manufacturing execution decision. Scientific Reports, 12, 1546. https://doi.org/10.1038/s41598-022-05304-w
  • [37] Zhou, K. Q., & Zain, A. M. (2016). Fuzzy Petri nets, and industrial applications: a review. Artificial Intelligence Review, 45(4), 405–446. https://doi.org/10.1007/s10462-015-9451-9
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4c58ec81-6d26-4240-a944-caba4aa68183
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.