PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Computation of ground motion amplification in Kolkata megacity (India) using finite-difference method for seismic microzonation

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents the ground motion amplification scenario along with fundamental frequency (F0) of sedimentary deposit for the seismic microzonation of Kolkata City, situated on the world’s largest delta island with very soft soil deposit. A 4th order accurate SH-wave viscoelastic finite-difference algorithm is used for computation of response of 1D model for each borehole location. Different maps, such as for F0, amplification at F0, average spectral amplification (ASA) in the different frequency bandwidth of earthquake engineering interest are developed for a variety of end-users communities. The obtained ASA of the order of 3-6 at most of the borehole locations in a frequency range of 0.2510.0 Hz reveals that Kolkata City may suffer severe damage even during a moderate earthquake. Further, unexpected severe damage to collapse of multi-storey buildings may occur in localities near Hoogly River and Salt Lake area due to double resonance effects during distant large earthquakes.
Czasopismo
Rocznik
Strony
425--450
Opis fizyczny
Bibliogr. 39 poz.
Twórcy
autor
  • Department of Earthquake Engineering, Indian Institute of Technology Roorkee, Roorkee, India
autor
  • Department of Earthquake Engineering, Indian Institute of Technology Roorkee, Roorkee, India
autor
  • Department of Earthquake Engineering, Indian Institute of Technology Roorkee, Roorkee, India
Bibliografia
  • Anbazhagan, P., and T.G. Sitharam (2008), Seismic microzonation of Bangalore India, J. Earth Syst. Sci. 117, S2, 833-852, DOI: 10.1007/s12040-008-0071-5.
  • Atkinson, G.M., and J.F. Cassidy (2000), Integrated use of seismograph and strongmotion data to determine soil amplification: response of the Fraser River Delta to the Duvall and Georgia Strait earthquakes, Bull. Seismol. Soc. Am. 90, 4, 1028-1040, DOI: 10.1785/0119990098.
  • Bard, P.Y., and J. Riepl-Thomas (2000), Wave propagation in complex geological structures and their effects on strong ground motion. In: E. Kausel and G. Manolis (eds.), Wave Motion in Earthquake Engineering, International series on advances in earthquake engineering, WIT Press, Southampton, 37-95.
  • Boatwright, J., L.C. Seekins, T.E. Fumal, H.-P. Liu, and C.S. Mueller (1991), Ground motion amplification in the Marina district, Bull. Seismol. Soc. Am. 81, 5, 1980-1997.
  • Campillo, M., P.-Y. Bard, F. Nicollin, and F. Sánchez-Sesma (1988), The Mexico earthquake of September 19, 1985 – the incident wavefield in Mexico City during the great Michoacán earthquake and its interaction with the deep basin, Earthq. Spectra 4, 3, 591-608, DOI: 10.1193/1.1585492.
  • Clayton, R., and B. Engquist (1977), Absorbing boundary conditions for acoustic and elastic wave equations, Bull. Seismol. Soc. Am. 67, 6, 1529-1540.
  • Futterman, W.I. (1962), Dispersive body waves, J. Geophys. Res. 67, 13, 5279-5291, DOI: 10.1029/JZ067i013p05279.
  • Graves, R.W. (1996), Simulating seismic wave propagation in 3D elastic media using staggered-grid finite differences, Bull. Seismol. Soc. Am. 86, 4, 1091-1106.
  • GSI (2000), Seismotectonic atlas of India and its environs, Geological Survey of India.
  • IS-1893 (2002), Criteria for earthquake resistant design of structures – Part 1: General provision and buildings, IS 1893 (Part 1), Bureau of Indian Standards, New Delhi, India.
  • Israeli, M.. and S.A. Orszag (1981), Approximation of radiation boundary conditions, J. Comput. Phys. 41, 1, 115-135, DOI: 10.1016/0021-9991(81) 90082-6.
  • İyisan, R. (1996), Correlations between shear wave velocity and in-situ penetration test results, Teknik Dergi 7, 2, 1187-1199 (in Turkish).
  • Jhingran, A.G., C. Karunakaran, and J.G. Krishnamurthy (1969), The Calcutta earthquakes of 15th April and 9th June, 1964, Records Geol. Surv. India 97, 2, 1-29.
  • Kristek, J., and P. Moczo (2003), Seismic wave propagation in viscoelastic media with material discontinuities: a 3D fourth-order staggered grid finite difference modeling, Bull. Seismol. Soc. Am. 93, 5, 2273-2280, DOI: 10.1785/0120030023.
  • Kumar, S., and J.P. Narayan (2008), Importance of quantification of local site effects based on wave propagation in seismic microzonation, J. Earth Syst. Sci. 117, S2, 731-748, DOI: 10.1007/s12040-008-0067-1.
  • Levander, A.R. (1988), Fourth-order finite-difference P-SV seismograms, Geophysics 53, 11, 1425-1436, DOI: 10.1190/1.1442422.
  • Moczo, P., E. Bystrický, J. Kristek, J.M. Carcione, and M. Bouchon (1997), Hybrid modeling of P-SV seismic motion at inhomogeneous viscoelastic topographic structures, Bull. Seismol. Soc. Am. 87, 5, 1305-1323.
  • Moczo, P., J. Kristek, and E. Bystrický (2000), Stability and grid dispersion of the P-SV 4th order staggered grid finite difference scheme, Stud. Geophys. Geod. 44, 3, 381-402, DOI: 10.1023/A:1022112620994.
  • Moczo, P., J. Kristek, V. Vavryčuk, R.J. Archuleta, and L. Halada (2002), 3D heterogeneous staggered-grid finite-difference modelling of seismic motion with volume harmonic and arithmetic averaging of elastic moduli and densities, Bull. Seismol. Soc. Am. 92, 8, 3042-3066, DOI: 10.1785/0120010167.
  • Moczo, P., J. Kristek, and L. Halada (2004), The Finite-Difference Method for Seismologists. An Introduction, Comenius University, Bratislava.
  • Murty, A.S.N., K. Sain, and B.R. Prasad (2008), Velocity structure of the West-Bengal sedimentary basin, India along the Palashi-Kandi profile using a travel-time inversion of wide-angle seismic data and gravity modeling – an update, Pure Appl. Geophys. 165, 9-10, 1733-1750, DOI: 10.1007/s00024-008-0398-5.
  • Nandy, D.R. (2001), Geodynamics of Northeastern Indian and the Adjoining Region, ACB Publications, Kolkata, 209 pp.
  • Nandy, D.R. (2007), Need for seismic microzonation of Kolkata megacity. In: Proc. Workshop on Microzonation, Indian Institute of Science, June 2007, Bangalore, India, 26-27.
  • Narayan, J.P. (2001), Site-specific strong ground motion prediction using 2.5-D modelling, Geophys. J. Int. 146, 2, 269-281, DOI: 10.1046/j.0956-540x.2001.01424.x.
  • Narayan, J.P. (2005), Study of basin-edge effects on the ground motion characteristics using 2.5-D Modelling, Pure Appl. Geophys. 162, 2, 273-289, DOI 10.1007/s00024-004-2600-8.
  • Narayan, J.P. (2010), Effects of impedance contrast and soil thickness on basintransduced Rayleigh waves and associated differential ground motion, Pure Appl. Geophys. 167, 12, 1485-1510, DOI: 10.1007/s00024-010-0131-z.
  • Narayan, J.P. (2012), Effects of P-wave and S-wave impedance contrast on the characteristics of basin transduced Rayleigh waves, Pure Appl. Geophys. 169, 4, 693-709, DOI: 10.1007/s00024-011-0338-7.
  • Narayan, J.P., and S. Kumar (2008), A fourth order accurate SH-wave staggered grid finite-difference algorithm with variable grid size and VGR-stress imaging technique, Pure Appl. Geophys. 165, 2, 271-294, DOI: 10.1007/s00024-008-0298-8.
  • Narayan, J.P., and V. Kumar (2012), SH-wave time domain finite-difference algorithm with realistic damping and a combined study of effects of sediment rheology and basement focusing (communicated).
  • Narayan, J.P., and S.P. Singh (2006), Effects of soil layering on the characteristics of basin-edge induced surface waves and differential ground motion, J. Earthq. Eng. 10, 4, 595-614, DOI: 10.1080/13632460609350611.
  • Narayan, J.P., M.L. Sharma, and A. Kumar (2002), A seismological report on the 26 January 2001, Bhuj, India earthquake, Seismol. Res. Lett. 73, 3, 343-355, DOI: 10.1785/gssrl.73.3.343.
  • Opršal, I., D. Fäh, P.M. Mai, and D. Giardini (2005), Deterministic earthquake scenario for the Basel area: Simulating strong motions and site effects for Basel, Switzerland, J. Geophys. Res. 110, B4, B04305, DOI: 10.1029/2004JB003188.
  • Reddy, P.R., A.S.S.S.R.S Prasad, and D. Sarkar (1998), Velocity modelling of Bengal Basin refraction data – refinement using multiples, J. Appl. Geophys. 39, 2, 109-120, DOI: 10.1016/S0926-9851(98)00006-8.
  • Romo, M.P., and H.B. Seed (1986), Analytical modelling of dynamic soil response in the Mexico earthquake of Sept. 19, 1985. In: Proc. ASCE International Conference on Mexico Earthquakes – 1985, Mexico City, Mexico, 148-162.
  • Salt, C.A., M.M. Alam, and M.M. Hosssain (1986), Current exploration of the Hinge zone area of southwest Bangladesh. In: Proc. 6th Offshore SE Asia Conf., 20-31 January, 1986, World Trade Centre, Singapore, 65-67.
  • Seeber, L., and J.G. Armbruster (1981), Great detachment earthquakes along the Himalayan arc and long-term forecasting. In: D.W. Simpson and P.G. Richards (eds.), Earthquake Prediction – An International Review, Maurice Ewing Series, Vol. 4, American Geophysical Union, Washington, 259-277, DOI: 10.1029/ME004p0259.
  • Singh, S.K. (2009), Estimation of earthquake ground motion in Mexico City and Delhi, two mega cities, ISET J. Earthq. Technol. 46, 2, 65-76.
  • Sitharam, T.G., P. Anbazhagan, and G.U. Mahesh (2007), 3-D subsurface modeling and preliminary liquefaction hazard mapping of Bangalore city using SPT data and GIS, Indian Geotech. J. 37, 3, 210-226.
  • Vaccari, F., M.Y. Walling, W.K. Mohanty, S.K. Nath, A.K. Verma, A. Sengupta, and G.F. Panza (2011), Site-specific modeling of SH and P-SV waves for microzonation study of Kolkata Metropolitan city, India, Pure Appl. Geophys. 168, 3-4, 479-493, DOI: 10.1007/s00024-010-0141-x.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4c57eb56-559a-415e-bc4e-a9b8830d8f46
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.