PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of solution heat treatment on the microstructure and hardness of a high carbon alloy from the Ni-Co-Cr-Ta-Al system

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The main purpose of this paper was to determine the influence of the temperature of solution heat treatment on the microstructure and hardness of the newly designed model alloy, intended for working at high temperatures. Design/methodology/approach: A mass weighing approx. 1 kg was test melted in a vacuum furnace and cast into a ceramic mould. Samples for investigations were solution heat treated at the temperature range of 1020-1170°C. After heating to the desired temperature, the samples were held at this temperature for 2 hours and then water-cooled. Findings: The main constituents of the microstructure of the Ni-Co-Cr-Ta-Al-C alloy in as-cast state are: the γ phase, which constitutes the matrix, the γ’ phase (γ’ phase occurs as fine globular precipitates) as well as primary TaC and Cr7C3 carbides. Irregularly shaped primary carbides are uniformly distributed and do not form agglomerates. Solution heat treatment of the investigated alloy at exceedingly higher temperatures causes a slow decrease of chromium primary carbides. Research limitations/implications: Taking into account the chemical composition of the investigated alloy, it is reasonable to expect the heat treatment should improve its properties. At 1020°C, γ’ phase precipitations dissolve and it is possible to achieve a super saturated solid solution matrix. Next, correct aging treatment should by applied. Practical implications: A new model alloy which allows to design a new material for high temperature applications. Originality/value: New chemical compositions and microstructure of Ni-based materials for high temperature application with high carbon contents. Additionally, the new alloy is strengthened not only by a high carbon volume fraction but also by intermetallic phases.
Rocznik
Strony
5--11
Opis fizyczny
Bibliogr. 32 poz.
Twórcy
autor
  • Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland
  • Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland
Bibliografia
  • [1] J.R. Davies, Metallurgy, Processing and Properties of Superalloys, ASM Speciality Handbook: Heat Resistant Materials, ASM International, 1997.
  • [2] A.K. Sinha, Physical metallurgy handbook, The McGraw-Hill Companies, Inc., 2003.
  • [3] P. Bała, J. Pacyna, J. Krawczyk, The kinetics of phase transformations during tempering in the new hot working steel, Journal of Achievements in Materials and Manufacturing Engineering 22/1 (2007) 15-18.
  • [4] P. Bała, J. Pacyna, J. Krawczyk, Continuous heating from as-quenched state in a new hot-work steel, Archives of Materials Science and Engineering 28/9 (2007) 517-524.
  • [5] P. Bała, J. Pacyna, J. Krawczyk, The kinetics of phase transformations during tempering of Cr-Mo-V medium carbon steel, Journal of Achievements in Materials and Manufacturing Engineering 20/2 (2007) 79-82.
  • [6] P. Bała, J. Krawczyk, J. Pacyna, The kinetics of phase transformations during tempering of low alloy medium carbon steel, Archives of Materials Science and Engineering 28/2 (2007) 98-104.
  • [7] A. Hernas, High-temperature creep resistance of steels and alloys, Silesian University of Technology, Gliwice, 1999 (in Polish).
  • [8] K.C. Antony, Wear-Resistant Cobalt-Base Alloys, Journal of Metals 35/2 (1983) 52-60.
  • [9] J.-C. Shin, J.-M. Doh, J.-K. Yoon, D.-Y. Lee, J.-S. Kim, Effect of molybdenum on the microstructure and wear resistance of cobalt-base Stellite hardfacing alloys, Surface and Coatings Technology 166/2-3 (2003) 117-126.
  • [10] R.F. Decker, The evolution of wrought age-hardenable superalloys, Journal of Metals 58/9 (2006) 32-36.
  • [11] M. Durand-Charre, The microstructure of Superalloys, CRC Press, 1977.
  • [12] P. Jonsta, Z. Jonsta, J. Sojka, L. Cizek, A. Hernas, Structural characteristics of nickel super alloy INCONEL 713LC after heat treatment, Journal of Achievements in Materials and Manufacturing Engineering 21/1 (2007) 29-32.
  • [13] M. Zielińska, J. Sieniawski, M. Poręba, Microstructure and mechanical properties of high temperature creep resisting superalloy Rene 77 modified CoAl2O4, Archives of Materials Science and Engineering 28/10 (2007) 629-632.
  • [14] A. Onyszko, K. Kubiak, J. Sieniawski, Turbine blades of the single crystal nickel based CMSX-6 superalloy, Journal of Achievements in Materials and Manufacturing Engineering 32/1 (2009) 66-69.
  • [15] M. Zielińska, K. Kubiak, J. Sieniawski, Surface modification, microstructure and mechanical properties of investment cast superalloy, Journal of Achievements in Materials and Manufacturing Engineering 35/1 (2009) 55-62.
  • [16] J. Adamiec, Ni3Al alloy’s properties related to hightemperature brittleness, Archives of Materials Science and Engineering 28/6 (2007) 333-336.
  • [17] J.M. Nell, N.J. Grant, Multiphase strengthened nickel base superalloys containing refractory carbide dispersions, Superalloys 1992, The Minerals, Metals & Materials Society, 1992, 113-121.
  • [18] Y. Zhu, S. Zhang, T. Zhang, J. Zhang, Z. Hu, X. Xie, Ch. Shi, A new way to improve the superalloys, Superalloys 1992, The Minerals, Metals & Materials Society, 1992, 145-154.
  • [19] S.A. Sajjadi, S.M. Zebarjad, Study of fracture mechanisms of a Ni-Base superalloy at different temperatures, Journal of Achievements in Materials and Manufacturing Engineering 18/2 (2006) 227-230.
  • [20] S.A. Sajjadi, S.M. Zebarjad, Effect of temperature on tensile fracture mechanisms of a Ni-base superalloy, Archives of Materials Science and Engineering 28/1 (2007) 34-40.
  • [21] A. Nowotnik, Mechanical and structural aspects of high temperature deformation in Ni alloy, Journal of Achievements in Materials and Manufacturing Engineering 26/2 (2008) 143-146.
  • [22] A.R.P. Singh, S. Nag, J.Y. Hwang, G.B. Viswanathan, J. Tiley, R. Srinivasan, H.L. Fraser, R. Banerjee, Influence of cooling rate on the development of multiple generations of ɤ ‘ precipitates in a commercial nickel base superalloy, Materials Characterization 62 (2011) 878-886, DOI:10.1016/j.matchar.2011.06.002.
  • [23] Z. Peng-jie, Y.U. Jin-jiang, S.U.N. Xiao-feng, G. Heng-rong, H.U. Zhuang-qi, Roles of Zr and Y in cast microstructure of M951 nickel-based superalloy, Transactions of Nonferrous Metals Society of China 22 (2012) 1594-1598, DOI:10.1016/S1003-6326(11)61361-7.
  • [24] Y. Amouyal, D.N. Seidman, The role of hafnium in the formation of misoriented defects in Ni-based superalloys: An atom-probe tomographic study, Acta Materialia 59 (2011) 3321-3333, DOI:10.1016/j. actamat.2011.02.006.
  • [25] J. Chen, J.H. Lee, C.Y. Jo, S.J. Choe, Y.T. Lee, MC carbide formation in directionally solidified MARM247 LC superalloy, Materials Science and Engineering: A 247/1-2 (1998) 113-125, DOI: 10.1016/S0921-5093(97)00761-2.
  • [26] Y.U. Zhu-huan, L.I.U. Lin, Z. Xin-bao, Effect of solidification rate on MC-type carbide morphology in single crystal Ni-base superalloy AM3, Transactions of Nonferrous Metals Society of China 20 (2010) 1835-1840, DOI:10.1016/S1003-6326(09)60382-4.
  • [27] T.J. Garosshen, G.R. McCarthy, Low Temperature Carbide Precipitation in a Nickel Base Superalloy, Metallurgical Transactions A 16/7 (1985) 1213-1223.
  • [28] K.L. Zeisler-Mashl, B.J. Pletka, Segregation during solidification in the MAR-M247 system, Superalloys 1992, The Minerals, Metals & Materials Society, 1992, 175-184.
  • [29] K. Wieczerzak, P. Bała, M. Stepien, G. Cios, Microstructural and microchemical characterization of Ni-Ta-Al-Cr-C coating layer on austenitic stainless steel AISI 310, Surface and Coatings Technology 280 (2015) 110-121, DOI:10.1016/j.surfcoat.2015.08.060.
  • [30] K. Wieczerzak, M. Watroba, W. Bednarczyk, M. Madej, M. Marzec, T. Tokarski, P. Bała, The ɤ ‘ -Ni 3(Al , Ta) phase triggered strengthening of the Ni-Ta-Al-Cr-C coating layer, deposited on austenitic stainless steel, Materials Characterization 129 (2017) 367-377, DOI:10.1016/j.matchar.2017.05.028.
  • [31] P. Bała, High carbon alloy from the Ni-Ta-Al-Co-Cr system, Monographs, AGH University of Science and Technology Press, Kraków, 2012.
  • [32] P. Bała, Microstructure characterization of high carbon alloy from the Ni-Ta-Al-Co-Cr system, Archives of Metallurgy and Materials 57 (2012) 937-941.
Uwagi
PL
Opracowanie w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4c57d34a-1c0d-4ec8-9b4e-3ee7c9bb1ef4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.