PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The geomorphology of the Makran Trench in the context of the geological and geophysical settings of the Arabian Sea

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The study focuses on the Makran Trench in the Arabian Sea basin, in the north Indian Ocean. The area is tectonically active, with a system of ridges and fracture zones morphologically separating the Arabian Sea. The study examined the relationships between the topographic structure of the Makran Trench and the regional settings of the Arabian Sea: geomorphology, sediment thickness, geophysical fields, geology and tectonic lineaments. The methodology is based on the GMT scripting toolset. The spatial analysis includes high-resolution datasets GEBCO, EGM2008, GlobSed and data on tectonics, geology, geophysics, sediment thickness and topographic terrain model visualized by GMT. The paper also defined a way in which the proprietary ESRI data format can be transformed into the freely available GMT geospatial data of the geoid EGM2008 model. The geomorphological modeling included the automatic digitization of 300-km width cross-section profiles of the trench demonstrating its submarine relief. The analysis showed a correlation between the geological and tectonic structures, asymmetric geomorphology and geophysical anomaly fields. Gravity data indicate a crustal structure with anomalies generated by the bending of the lithosphere into the Makran subduction zone and density variations in the mantle reflected on the gravity maps. The gravity correlates with lineaments of the geomorphic structures. Bathymetric analysis revealed the most frequent depth (448 samples) at −3,250 to −3,500 m, followed by intervals: −3,000 to −3,250 m, −2,750 to −3,000 m. The declining continental slope correlates with gradually decreasing depths as equally distributed bins: 124 samples (−2,500 to −2,750 m), 96 (−2,250 to −2,500 m), 86 (−2,000 to −2,250 m). The trench is an asymmetric form with a high steepness on the continental slope of Pakistan and low steepness with a flat valley on the oceanward side. The multi-source data integration is important for seafloor mapping and the geomorphological analysis of oceanic trenches hidden to direct observations. The machine learning methods of GMT and cartographic modeling provide possibilities for the effective visualization of the trench. The comparison of the geomorphology with gravity anomalies, tectonic lineation, geological structures and topographical variations provides more detail to studies of the seafloor in the Arabian Sea.
Słowa kluczowe
Wydawca
Rocznik
Strony
205--222
Opis fizyczny
Bibliogr. 92 poz., rys., wykr.
Twórcy
  • Analytical Center; Moscow, 115035, Russian Federation
Bibliografia
  • Abedi M. & Bahroudi A., 2016. A geophysical potential field study to image the Makran subduction zone in SE of Iran. Tectonophysics, 688, 119–134.
  • Agard P., Omrani J., Jolivet L., Whitechurch H., Vrielynck B., Spakman W., Monié P., Meyer B. & Wortel R., 2011. Zagros orogeny: a subduction-dominated process. Geological Magazine, 148, 5–6, 692–725. https://doi.org/10.1017/S001675681100046X.
  • Alavi M., 1980. Tectonostratigraphic evolution of the Zagrosides of Iran. Geology, 8, 144–149.
  • Al-Lazki A.I., Al-Damegh K.S., El-Hadidy S.Y., Ghods A. & Tatar M., 2014. Pn-velocity structure beneath Arabia-Eurasia Zagros collision and Makran subduction zones. [in:] Rollinson H.R., Searle M.P., Abbasi I.A., Al-Lazki A.I. &d Al-Kindi M.H., Tectonic Evolution of the Oman Mountains, Geological Society, Special Publication, 392, Geological Society of London, 45–60. https://doi.org/10.1144/SP392.3.
  • Awad M.B., El-Gendy A., El-Ghamri M.A., Hussein S.A. & Hamouda A.Z., 2001. Neotectonics of the Gulf of Aqaba, Red Sea, interpreted from gravity and deep seismic data. [in:] Proceeding of the 2nd International Symposium on Geophysics (ISG-2), 19-20 February, 2001, Tanta University, Egypt, 13–26.
  • Berberian F., Muir I.D., Pankhurst R.J. & Berberian M., 1982. Late cretaceous and early Miocene Andean-type plutonic activity in northern Makran and Central Iran. Journal of the Geological Society, 139, 5, 605–614. https://doi.org/10.1144/gsjgs.139.5.0605.
  • Bhattacharya G.C., Chaubey A.K., Murty G.P.S., Srinivas K., Sarma K.V.L.N.S., Subrahmanyam V. & Krishna K.S., 1994. Evidence for seafloor spreading in the Laxmi Basin, northeastern Arabian Sea. Earth and Planetary Science Letters, 125, 211–220. https://doi.org/10.1016/0012-821X(94)90216-X.
  • Bourget J., Zaragosi S., Ellouz-Zimmermann S., Ducassou E., Prins M.A., Garlan T., Lanfumey V., Schneider J.-L., Rouillard P. & Giraudeau J., 2010. Highstand vs. lowstand turbidite system growth in the Makran active margin: Imprints of high-frequency external controls on sediment delivery mechanisms to deep water systems. Marine Geology, 274, 1–4, 187–208. https://doi.org/10.1016/j.margeo.2010.04.005.
  • Bosworth W., Huchon P. & McClay K., 2005. The Red Sea and Gulf of Aden Basins. Journal of African Earth Sciences, 43, 1–3, 334–378. https://doi.org/10.1016/j.jafrearsci.2005.07.020.
  • Burg J.P., 2018. Geology of the onshore Makran accretionary wedge: Synthesis and tectonic interpretation. Earth-Science Reviews, 185, 1210–1231. https://doi.org/10.1016/j.earscirev.2018.09.011.
  • Burg J.-P., Dolati A., Bernoulli D. & Smit J., 2013. Structural style of the Makran Tertiary accretionary complex in SE-Iran. [in:] Al Hosani K., Roure F., Ellison R. & Lokier S. (eds.), Lithosphere Dynamics and Sedimentary Basins: The Arabian Plate and Analogues, Springer Verlag, Heidelberg, 239–259.
  • Delaloye M. & Desmons J., 1980. Ophiolites and mélange terranes in Iran: a geochronological study and its paleotectonic implications. Tectonophysics, 68, 1, 83–111. https://doi.org/10.1016/0040-1951(80)90009-8.
  • Ekström G., Nettles M. & Dziewonski A.M., 2012. The global CMT project 2004-2010: Centroid-moment tensors for 13,017 earthquakes. Physics of the Earth and Planetary Interiors, 200–201, 1–9.
  • Ellouz-Zimmermann N., Deville E., Müller C., Lallemant S., Subhani A.B. & Tabreez A.R., 2007. Impact of sedimentation on convergent margin tectonics: example of the Makran Accretionary Prism (Pakistan). [in:] Lacombe O., Lavé J., Roure F. & Vergés J. (eds.), Thrust Belts and Foreland Basins: From Fold Kinematics to Hydrocarbon Systems, Springer Verlag, Berlin, 327–350. https://doi.org/10.1007/978-3-540-69426-7_17.
  • Farah A., Lawrence R.D. & Dejong K.A., 1984. An overview of the tectonics of Pakistan. [in:] Haq B.U. & Milliman J.D. (eds.), Marine Geology and Oceanography of Arabian Sea and Coastal Pakistan, Van Nostrand Reinhold/Scientific and Academic Editions, 161–176.
  • Freeman H., 1988. An expert system for the automatic placement of names on a geographic map. Information Sciences, 45, 367–378.
  • Gauger S., Kuhn G., Gohl K., Feigl T., Lemenkova P. & Hillenbrand C., 2007. Swath-bathymetric mapping. Reports on Polar and Marine Research, 557, 38–45.
  • Gaedicke C., Schlüter H.-U., Roeser H.A., Prexl A., Schreckenberger B., Meyer H., Reichert C., Clift P. & Amjad S., 2002. Origin of the northern Indus Fan and Murray Ridge, Northern Arabian Sea: interpretation from seismic and magnetic imaging. Tectonophysics, 355, 1–4, 127–143. https://doi.org/10.1016/S0040-1951(02)00137-3.
  • Glennie K.W., Hughes Clarke M.W., Boeuf M.G.A., Pilaar W.F.H. & Reinhardt B.M., 1990. Inter-relationship of Makran-Oman Mountains belts of convergence. [in:] Robertson A.H.F., Searle M.P. & Ries A.C. (eds.), The Geology and Tectonics of the Oman Region, Geological Society, London, Special Publications, 49, Geological Society of London, 773–786. https://doi.org/10.1144/GSL.SP.1992.049.01.47.
  • Goodenough K.M., Thomas R.J., Styles M.T., Schofield D.I. & MacLeod C.J., 2014. Records of ocean growth and destruction in the Oman–UAE Ophiolite. Elements, 10, 2, 109–114. https://doi.org/10.2113/gselements.10.2.109.
  • Grando G. & McClay K., 2007. Morphotectonics domains and structural styles in the Makran accretionary prism, offshore Iran. Sedimentary Geology, 196, 1–4, 157–179.
  • Haghipour N., Burg J.-P., Ivy-Ochs S., Hadjas I., Kubuk P.W. & Christl M., 2015. Correlation of fluvial terraces and temporal steady-state incision on the onshore Makran accretionary wedge in southeastern Iran: insight from channel profiles and 10Be exposure dating of strath terraces. Geological Society of America Bulletin, 127, 3–4, 560–583. https://doi.org/10.1130/B31048.1.
  • Hosseini-Barzi M. & Talbot C.J., 2003. A tectonic pulse in the Makran accretionary prism recorded in Iranian coastal sediments. Journal of the Geological Society, 160 (6), 903–910. https://doi.org/10.1144/0016-764903-005.
  • Hangouet J.F., 1998. Approches et méthodes pour l’automatisation de la généralisation cartographique; application en bord de ville. Université de Marne La Vallée, Paris [Ph.D. thesis].
  • Harms J.C., Cappel H.N. & Francis D.C., 1984. The Makran coast of Pakistan: its stratigraphy and hydrocarbon potential. [in:] Haq B.U. & Milliman J.D. (eds.), Marine Geology and Oceanography of Arabian Sea and Coastal Pakistan, Van Nostrand Reinhold/Scientific and Academic Editions, 3–27.
  • Hinze W., Von Frese R. & Saad A., 2013. Gravity and Magnetic Exploration: Principles, Practices, and Applications. Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9780511843129.
  • Hunziker D., Burg J.P., Bouilhol P. & von Quadt A., 2015. Jurassic rifting at the Eurasian Tethys margin: geochemical and geochronological constraints from granitoids of North Makran, southeastern Iran. Tectonics, 34, 3, 571–593. https://doi.org/10.1002/2014TC003768.
  • Hussain J., Butt K.A. & Pervaiz K., 2002. Makran coast: a potential seismic risk belt. Geological Bulletin (University of Peshawar), 35, 43–56.
  • Jacob K.H. & Quittmeyer R.C., 1979. The Makran Region of Pakistan and Iran: Trench-arc system with active plate subduction. [in:] Farah A. & Dejong K.A. (eds.), Geodynamics of Pakistan, Geological Survey of Pakistan, Quetta, 305–317.
  • Kananian A., Juteau T., Bellon H., Darvishzadeh A., Sabzehi M., Whitechurch H. & Ricou L.-E., 2001. The ophiolite massif of Kahnuj (western Makran, southern Iran): new geological and geochronological data. Comptes Rendus de l’Académie des Sciences – Series IIA – Earth and Planetary Science, 332, 9, 543–552.
  • Klaučo M., Gregorová B., Stankov U., Marković V. & Lemenkova P., 2013a. Determination of ecological significance based on geostatistical assessment: a case study from the Slovak Natura 2000 protected area. Central European Journal of Geosciences, 5, 1, 28–42. https://doi.org/10.2478/s13533-012-0120-0.
  • Klaučo M., Gregorová B., Stankov U., Marković V. & Lemenkova P., 2013b. Interpretation of Landscape Values, Typology and Quality Using Methods of Spatial Metrics for Ecological Planning. [in:] 54th International Conference Environmental & Climate Technologies. https://doi.org/10.13140/RG.2.2.23026.96963.
  • Klaučo M., Gregorová B., Stankov U., Marković V. & Lemenkova P., 2014. Landscape metrics as indicator for ecological significance: assessment of Sitno Natura 2000 sites, Slovakia. [in:] Ecology and Environmental Protection. Proceedings of the International Conference, Minsk, March 19–20, 2014, 85–90.
  • Klaučo M., Gregorová B., Stankov U., Marković V. & Lemenkova P., 2017. Land planning as a support for sustainable development based on tourism: A case study of Slovak Rural Region. Environmental Engineering and Management Journal, 2, 16, 449–458. https://doi.org/10.30638/eemj.2017.045.
  • Kopp C., Fruehn J., Flueh E.R., Reichert C., Kukowski N., Bialas J. & Klaeschen D., 2000. Structure of the Makran subduction zone from wide-angle and reflection seismic data. Tectonophysics, 329, 1–4, 171–191. https://doi.org/10.1016/S0040-1951(00)00195-5.
  • Kuhn G., Hass C., Kober M., Petitat M., Feigl T., Hillenbrand C.D., Kruger S., Forwick M., Gauger S. & Lemenkova P., 2006. The response of quaternary climatic cycles in the South-East Pacific: development of the opal belt and dynamics behavior of the West Antarctic ice sheet. [in:] Gohl K. (ed.), Expeditionsprogramm Nr. 75 ANT XXIII/4. https://doi.org/10.13140/RG.2.2.11468.87687.
  • Laane J.L. & Chen W.-P., 1989. The Makran earthquake of 1983 April 18: a possible analogue to the Puget Sound earthquake of 1965? Geophysical Journal International, 98, 1, 1–9. https://doi.org/10.1111/j.1365-246X.1989.tb05509.x.
  • Lemenkova P., 2011. Seagrass Mapping and Monitoring Along the Coasts of Crete, Greece. University of Twente, Netherlands [M.Sc. thesis].
  • Lemenkova P., 2018. R scripting libraries for comparative analysis of the correlation methods to identify factors affecting Mariana Trench formation. Journal of Marine Technology and Environment, 2, 35–42. https://doi.org/10.6084/m9.figshare.7434167.
  • Lemenkova P., 2019a. Statistical Analysis of the Mariana Trench Geomorphology Using R Programming Language. Geodesy and Cartography, 45, 2, 57–84. https://doi.org/10.3846/gac.2019.3785.
  • Lemenkova P., 2019b. Topographic surface modelling using raster grid datasets by GMT: example of the Kuril-Kamchatka Trench, Pacific Ocean. Reports on Geodesy and Geoinformatics, 108, 9–22. https://doi.org/10.2478/rgg2019-0008.
  • Lemenkova P., 2019c. GMT Based Comparative Analysis and Geomorphological Mapping of the Kermadec and Tonga Trenches, Southwest Pacific Ocean. Geographia Technica, 14, 2, 39–48. https://doi.org/10.21163/GT_2019.142.04.
  • Lemenkova P., 2019d. Geomorphological modelling and mapping of the Peru-Chile Trench by GMT. Polish Cartographical Review, 51, 4, 181–194. https://doi.org/10.2478/pcr-2019-0015.
  • Lemenkova P., 2019e. AWK and GNU Octave Programming Languages Integrated with Generic Mapping Tools for Geomorphological Analysis. GeoScience Engineering, 65, 4, 1–22. https://doi.org/10.35180/gse-2019-0020.
  • Lemenkova P., 2019f. Automatic Data Processing for Visualising Yap and Palau Trenches by Generic Mapping Tools. Cartographic Letters, 27, 2, 72–89. https://doi.org/10.6084/m9.figshare.11544048.
  • Lemenkova P., 2019g. Geophysical Modelling of the Middle America Trench using GMT. Annals of Valahia University of Targoviste. Geographical Series, 19, 2, 73–94. https://doi.org/10.6084/m9.figshare.12005148.
  • Lemenkova P., 2019h. An Empirical Study of R Applications for Data Analysis in Marine Geology. Marine Science and Technology Bulletin, 8, 1, 1–9. https://doi. org/10.33714/masteb.486678.
  • Lemenkova P., 2019i. Testing Linear Regressions by StatsModel Library of Python for Oceanological Data Interpretation. Aquatic Sciences and Engineering, 34, 51–60. https://doi.org/10.26650/ASE2019547010.
  • Lemenkova P., 2020a. Visualization of the geophysical settings in the Philippine Sea margins by means of GMT and ISC data. Central European Journal of Geography and Sustainable Development, 2, 1, 5–15. https://doi.org/10.6084/m9.figshare.12044799.
  • Lemenkova P., 2020b. Variations in the bathymetry and bottom morphology of the Izu-Bonin Trench modelled by GMT. Bulletin of Geography. Physical Geography Series, 18, 1, 41–60. https://doi.org/10.2478/bgeo-2020-0004.
  • Lemenkova P., 2020c. GMT Based Comparative Geomorphological Analysis of the Vityaz and Vanuatu Trenches, Fiji Basin. Geodetski List, 74, 1, 19–39. https://doi.org/10.6084/m9.figshare.12249773.
  • Lemenkova P., 2020d. GMT-based geological mapping and assessment of the bathymetric variations of the Kuril-Kamchatka Trench, Pacific Ocean. Natural and Engineering Sciences, 5, 1, 1–17. https://doi.org/10.28978/nesciences.691708.
  • Lemenkova P., Promper C. & Glade T., 2012. Economic Assessment of Landslide Risk for the Waidhofen a.d. Ybbs Region, Alpine Foreland, Lower Austria. [in:] Eberhardt E., Froese C., Turner A.K. & Leroueil S. (eds.), Landslides and Engineered Slopes: Protecting Society Through Improved Understanding: Proceedings of the 11th International and 2nd North American Symposium on Landslides and Engineered Slopes, Banff, Canada, 3-8 June 2012, vol. 1, CRC Press, Leiden, 279–285.
  • Lemoine F.G., Kenyon S.C., Factor J.K., Trimmer R.G., Pavlis N.K., Chinn D.S., Cox C.M., Klosko S.M., Luthcke S.B., Torrence M.H., Wang Y.M., Williamson R.G., Pavlis E.C., Rapp R.H. & Olson T.R., 1998. NASA/TP1998-206861: The Development of the Joint NASA GSFC and NIMA Geopotential Model EGM96. NASA Goddard Space Flight Center, Greenbelt, Maryland, 20771 USA.
  • Linsser H., 1967. Investigation of tectonics by gravity detailing. Geophysical Prospecting, 15, 3, 480–515.
  • Lisitsyn A.P., 1974. Osadkoobrazovaniyev okeanakh. Kolichestvennoye raspredeleniye osadochnogo materiala. Nauka, Moskva [Лисицын А.П., 1974. Осадкообразование в океанах. Количественное распределение осадочного материала. Наука, Москва].
  • Mayer L., Jakobsson M., Allen G., Dorschel B., Falconer R., Ferrini V., Lamarche G., Snaith H. & Weatherall P., 2018. The Nippon Foundation – GEBCO Seabed 2030 Project: The Quest to See the World’s Oceans Completely Mapped by 2030. Geosciences, 8, 2, 63. https://doi.org/10.3390/geosciences8020063.
  • McCall G.J.H., 1997. The geotectonic history of the Makran and adjacent areas of southern Iran. Journal of Asian Earth Sciences, 15, 6, 517–531. https://doi.org/10.1016/S0743-9547(97)00032-9.
  • Miles P.R., Munschy M. & Segoufin J., 1998. Structure and early evolution of the Arabian Sea and East Somali Basin. Geophysical Journal International, 134, 3, 876–888. https://doi.org/10.1046/j.1365-246x.1998.00625.x.
  • Minshull T.A., Edwards R.A. & Flueh E.R., 2015. Crustal structure of the Murray Ridge, northwest Indian Ocean, from wide-angle seismic data. Geophysical Journal International, 202, 1, 454–463. https://doi.org/10.1093/gji/ggv162.
  • Monahan D., 2004. GEBCO: the Second Century. D. Monahan, University of New Hampshire. Hydro International, 8, 9.
  • Motaghi K., Shabanian E. & Nozad-Khalil T., 2020. Deep structure of the western coast of the Makran subduction zone, SE Iran. Tectonophysics, 776, 228314. https://doi.org/10.1016/j.tecto.2019.228314.
  • Murton B.J. & Rona P.A., 2015. Carlsberg Ridge and Mid-Atlantic Ridge: Comparison of slow spreading centre analogues. Deep-Sea Research II, 121, 71–84.
  • Neprochnov Y.P., 1961. Sediment thickness in the basin of the Arabian Sea. Reports of the Academy of Sciences USSR, 139, 1.
  • Paul A., Hatzfeld D., Kaviani A., Tatar M. & Pequegnat C., 2010. Seismic imaging of the lithospheric structure of the Zagros mountain belt (Iran). [in:] Leturmy P. & Robin C. (eds.), Tectonic and Stratigraphic Evolution of Zagros and Makran during the Mesozoic–Cenozoic, Geological Society, Special Publications, 330, Geological Society of London, 5–18.
  • Pavlis N.K., Holmes S.A., Kenyon S.C. & Factor J.K., 2012. The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). Journal of Geophysical Research, 117, B04406. https://doi.org/10.1029/2011JB008916.
  • Platt J.P., Leggett J.K., Young J., Raza H. & Alam S., 1985. Large-scale sediment underplating in the Makran accretionary prism. Geology, 13, 7, 507–511. https://doi.org/10.1130/0091-7613(1985)13<507:LSUITM>2.0.CO;2.
  • Purnachandra Rao V., 1986. Phosphorites from the Error Seamount, Northern Arabian Sea. Marine Geology, 71, 1–2, 177–186. https://doi.org/10.1016/0025-3227(86)90038-1.
  • Prins M.A., Postma G. & Weltje G.J., 2000. Controls on terrigenous sediment supply to the Arabian Sea during the late Quaternary: the Makran continental slope. Marine Geology, 169, 3–4, 351–371. https://doi.org/10.1016/S0025-3227(00)00087-6.
  • Rani V.S., Srivastava K., Srinagesh D. & Dimri V.P., 2011. Spatial and temporal variations of b-value and fractal analysis for the Makran region. Marine Geodesy, 34, 1, 77–82. https://doi.org/10.1080/01490419.2011.547804.
  • Regard V., Hatzfeld D., Molinaro M., Aubourg C., Bayer R., Bellier O., Yamini-Fard F., Peyret M. & Abbassi M., 2010. The transition between Makran subduction and the Zagros collision: recent advances in its structure and active deformation. [in:] Leturmy P. & Robin C. (eds.), Tectonic and Stratigraphic Evolution of Zagros and Makran during the Mesozoic–Cenozoic, Geological Society, London, Special Publications, 330, Geological Society of London, 43–64. https://doi.org/10.1144/SP330.4.
  • Rodriguez M., Chamot-Rooke N., Huchon P., Fournier M., Lallemant S., Delescluse M., Zaragosie S. & Mouchot N., 2014. Tectonics of the Dalrymple Trough and uplift of the Murray Ridge (NW Indian Ocean). Tectonophysics, 636, 1–17. https://doi.org/10.1016/j.tecto.2014.08.001.
  • Ruas A., 1995. Multiple paradigms for Automating Map Generalization: Geometry, Topology, Hierarchical Partitioning and Local Triangulation. Proceedings of AutoCarto, 12, Charlotte, NC: ACSM/ASPRS, 69–78.
  • Sandwell D.T., Müller R.D., Smith W.H.F., Garcia E. & Francis R., 2014. New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure. Science 346, 65–67. https://doi.org/10.1126/science.1258213.
  • Schlüter H.U., Prexl A., Gaedicke Ch., Roeser H., Reichert Ch., Meyer H. & von Daniels C., 2002. The Makran accretionary wedge: sediment thicknesses and ages and the origin of mud volcanoes. Marine Geology, 185, 3–4, 219–232. https://doi.org/10.1016/S0025-3227(02)00192-5.
  • Searle M.P., James N.P., Calon I.J. & Smewing J.D., 1983. Sedimentological and structural evolution of the Arabian continental margin in the Musandam Mountains and Dibba zone, United Arab Emirates. Geological Society of America Bulletin, 94, 12, 1381–1400. https://doi.org/10.1130/0016-7606(1983)94<1381:SASEOT>2.0.CO;2.
  • Selim E.I. & Aboud E., 2012. Determination of sedimentary cover and structural trends in the Central Sinai area using gravity and magnetic data analysis. Journal of Asian Earth Sciences, 43, 193–206. https://doi.org/10.1016/ j.jseaes.2011.09.010.
  • Sengör A.M.C., Altiner D., Cin A., Ustaömer T. & Hsü K.J., 1988. The origin and assembly of the Tethyside orogenic collage at the expense of Gondwana land. [in:] Audley-Charles M.G. & Hallam A. (eds.), Gondwana and Tethys, Geological Society, London, Special Publications, 37, Geological Society of London, 119–181.
  • Smith W.H.F. & Sandwell D.T., 1997. Global seafloor topography from satellite altimetry and ship depth soundings. Science, 277, 1956–1962.
  • Smith G.L., McNeill L.C., Henstock T.J., Arraiz D. & Spiess V., 2014. Fluid generation and distribution in the highest sediment input accretionary margin, the Makran. Earth and Planetary Science Letters, 403, 1, 131–143. https://doi.org/10.1016/j.epsl.2014.06.030.
  • Schenke H.W. & Lemenkova P., 2008. Zur Frage der Meeresboden-Kartographie: Die Nutzung von AutoTrace Digitizer für die Vektorisierung der Bathymetrischen Daten in der Petschora-See. Hydrographische Nachrichten, 81, 16–21.
  • Stein C.A. & Cochran J.R., 1985. The transition between the Sheba Ridge and Owen Basin: rifting of old oceanic lithosphere. Geophysical Journal Royal Astronomical Society, 81, 1, 47–74.
  • Straume E.O., Gaina C., Medvedev S., Hochmuth K., Gohl K., Whittaker J.M., Abdul Fattah R., Doornenbal J.C. & Hopper J.R., 2019. GlobSed: Updated total sediment thickness in the world’s oceans. Geochemistry, Geophysics, Geosystems, 20, 4, 1756–1772. https://doi.org/10.1029/2018GC008115.
  • Suetova I.A., Ushakova L.A. & Lemenkova P., 2005. Geoinformation mapping of the Barents and Pechora Seas. Geography and Natural Resources, 4, 138–142. https://doi. org/10.6084/m9.figshare.7435535.
  • Takin M., 1972. Iranian Geology and Continental Drift in the Middle East. Nature, 235, 147–150.
  • Vernant P., Nilforoushan F., Hatzfeld D., Abbassi M.R., Vigny C., Masson F., Nankali H., Martinod J., Ashtiani A., Bayer R., Tavakoli F. & Chéry J., 2004. Present-day crustal deformation and plate kinematics in the Middle East constrained by GPS measurements in Iran and northern Oman. Geophysical Journal International, 157, 1, 381–398. https://doi.org/10.1111/j.1365-246X.2004.02222.x.
  • White R.S. & Klitgord K., 1976. Sediment deformation and plate tectonics in the Gulf of Oman. Earth and Planetary Science Letters, 32, 2, 199–209. https://doi.org/10.1016/0012-821X(76)90059-5.
  • White R.S., 1982. Deformation of the Makran accretionary sediment prism in the Gulf of Oman (north-west Indian Ocean). [in:] Leggett J.K. (ed.), Trench-Forearc Geology: Sedimentation and Tectonics on Modern and Ancient Active Plate Margins, Geological Society, Special Publications, 10, 1, Geological Society of London, 357–372.
  • Wessel P. & Smith W.H.F., 1991. Free software helps map and display data. EOS Transactions of the American Geophysical Union, 72, 41, 441.
  • Wessel P. & Smith W.H.F., 2018. The Generic Mapping Tools. Version 4.5.18 Technical Reference and Cookbook. Computer software manual. U.S.A.
  • Wessel P., Smith W.H F., Scharroo R., Luis J.F. & Wobbe F., 2013. Generic mapping tools: Improved version released. EOS Transactions of the American Geophysical Union, 94, 45, 409– 410.
  • Wolff T., 1967. Danish Expeditions on the Seven Seas. Rhodos, Copenhagen.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4c57811e-4f17-4488-a281-33b413a698bd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.