PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Radioactive concentrations of Sr-90 and Cs-137 in the diet of Polish residents over five years: 2020–2024

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The nuclides examined in this study, Sr-90 and Cs-137, are artificial radioactive isotopes, and their presence in the European environment is primarily associated with radioactive fallout from the 1986 Chernobyl disaster. Since ingestion is one of the main pathways for the intake of radioisotopes into organisms, the radioactive concentrations of Sr-90 and Cs-137 in the diet of Polish residents were studied. To estimate the intake of Sr-90 and Cs-137 through food, their levels in daily meals were measured annually in Warsaw, the capital city of Poland. The radioactive concentrations measured ranged from 0.03 to 0.07 Bq/day for Sr-90 and from 0.06 to 0.23 Bq/day for Cs-137. The combined effective doses from Sr-90 and Cs-137 varied between 0.69 and 1.60 μSv/year.
Rocznik
Strony
177--190
Opis fizyczny
Bibliogr. 19 poz., rys., tab.
Twórcy
  • Central Laboratory for Radiological Protection, Warsaw, Poland
  • Central Laboratory for Radiological Protection, Warsaw, Poland
  • Central Laboratory for Radiological Protection, Warsaw, Poland
Bibliografia
  • 1. Basu, S.K., McCutchan, E.A., (2022). Nuclear Data Sheets for A = 90. Nuclear Data Sheets, Volume 165, pp. 1–329. https://doi.org/10.1016/j.nds.2020.04.001
  • 2. Browne, E., Tuli, J.K., (2007). Nuclear Data Sheets for A = 137. Nuclear Data Sheets, Volume 108, Issue 10, pp. 2198–2215. http://doi.org/10.1016/j.nds.2007.09.002
  • 3. Centre for Environment, Fisheries and Aquaculture Science, (2020). Radioactivity in Food and the Environment, RIFE – 26.
  • 4. Centre for Environment, Fisheries and Aquaculture Science, (2021). Radioactivity in Food and the Environment, RIFE – 27.
  • 5. Centre for Environment, Fisheries and Aquaculture Science, (2022). Radioactivity in Food and the Environment, RIFE – 28.
  • 6. Centre for Environment, Fisheries and Aquaculture Science, (2023). Radioactivity in Food and the Environment, RIFE – 28, Appendix Files, Section 8, Table 8.3.
  • 7. De Cort, M., Dubois, G., Fridman, S. (1998). Atlas of caesium deposition on Europe after the Chernobyl accident. European Commission: Directorate–General for Research and Innovation, Publications Office.
  • 8. Franić, Z., Lokobauer, N., Marović, G., (2004). Radiostrontium activity concentrations in milk in the Republic of Croatia for 1961–2001 and dose assessment. https://doi.org/10.48550/arXiv.physics/0406054
  • 9. Journal of Laws of the European Union, EURATOM Treaty, Article 36 – Reporting of environmental radioactivity levels, OJ C 327, 2012.
  • 10. Journal of Laws of the Republic of Poland, Regulation of the Council of Ministers of 11 August 2021 on indicators allowing for the determination of ionizing radiation doses used in the assessment of exposure to ionizing radiation.
  • 11. Journal of Laws of the Republic of Poland, Atomic Law Act of May 11, 2023, Annex 4 – Ionizing Radiation Dose Limits, item 1173, 2023.
  • 12. Mattila, A., Inkinen, S., (2021). Environmental Radiation Monitoring in Finland Annual Report 2020, STUK–B 268. Radiation and Nuclear Safety Authority of Finland (STUK), pp. 59–61.
  • 13. Mattila, A., Inkinen, S., (2022). Environmental Radiation Monitoring in Finland Annual Report 2021, STUK–B 284. Radiation and Nuclear Safety Authority of Finland (STUK), pp. 58–60.
  • 14. Mattila, A., Inkinen, S., (2023). Environmental Radiation Monitoring in Finland Annual Report 2022, STUK–B 304. Radiation and Nuclear Safety Authority of Finland (STUK), pp. 60–62.
  • 15. Mattila, A., Inkinen, S., (2024). Environmental Radiation Monitoring in Finland Annual Report 2023, STUK–B 32. Radiation and Nuclear Safety Authority of Finland (STUK), pp. 57–59.
  • 16. Ohnuki, T., Kozai, N., Sakamoto, F., Sakamoto, Y., Watanabe, Y., (2016). Direct accumulation pathway of radioactive cesium to fruit-bodies of edible mushroom from contaminated wood logs. Scientific Reports, Volume 6, Article 29943. https://doi.org/10.1038/srep29943
  • 17. Shaw, G., (2007). Radionuclides in forest ecosystems. Radioactivity in the Environment, Volume 10, pp. 127–155. https://doi.org/10.1016/S1569-4860(06)10006-6
  • 18. Taira, K., Kato, H., Harada, K.H., et al., (2023). Internal radiation exposure from 137Cs and its association with the consumption of forest foodstuffs in Zhytomyr region, Ukraine. PLOS ONE, Volume 18, Issue 10, e0289513. https://doi.org/10.1371/journal.pone.0289513
  • 19. Zhu, Y.G., Smolders, E., (2000). Plant uptake of radiocaesium: a review of mechanisms, regulation and application. Journal of Experimental Botany, Volume 51, Issue 351, pp. 1635–1645. https://doi.org/10.1093/jexbot/51.351.1635
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4c521606-99a5-4431-b35e-9210e9ad7147
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.