PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Insight into the microstructural stability and thermal fatigue behavior of nitrided layers on martensitic hot forging tools

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this study is to evaluate some aspects related to the thermal-induced decomposition of the nitrided layers in dies used for hot forging made of tempered martensitic tool steel. Nitriding is used to improve the functional properties and durability of forging dies. The degradation of the tool surface without nitrided layers can be considered as an example of quenched and tempered steel. Thermal decomposition of nitrided layers on steel is an issue that is little known in the literature, especially when it concerns the decomposition under tribomechanical loading conditions. Changes occurring on the tool surface caused by service-life conditions have become the basis for considerations regarding the thermal stability of the nitrided layers. Material issues influencing the functional properties of dies have also been discussed. The conducted state-of-the-art literature reviews and metallographic analysis have shown that it is advisable to conduct further research on phase transformations related to the decomposition of nitrided layers. The strategy for further studies is also suggested.
Wydawca
Rocznik
Strony
1--17
Opis fizyczny
Bibliogr. 87 poz., rys.
Twórcy
  • Department of Metal Forming, Welding Technology and Metrology, Wroclaw University of Science and Technology Wrocław, Poland
Bibliografia
  • [1] Barrau, O., Boher, C., Gras, R., Rezai-Aria, F., Analysis of the friction and wear behaviour of hot work tool steel for forging. Wear, 2003, 255: 1444–1454. doi:10.1016/S0043-1648(03)00280-1
  • [2] Saiki, H., Marumo, Y., Minami, A., Sonoi, T., Effect of the surface structure on the resistance to plastic deformation of a hot forging tool, J. Mater. Process. Technol., 2001, 113: 22–27. doi:10.1016/S0924-0136(01)00632-X
  • [3] Zhang, Z., Delagnes, D., Bernhart, G., Microstructure evolution of hot-work tool steels during tempering and definition of a kinetic law based on hardness measurements, Mater. Sci. Eng.: A., 2004, 380: 222–230. doi:10.1016/j.msea.2004.03.067
  • [4] Jermolajev, S., Epp, J., Heinzel, C., Brinksmeier, E., Material modifications caused by thermal and mechanical load during grinding, Procedia CIRP, 2016, 45: 43–46. doi:10.1016/j.procir.2016.02.159
  • [5] Malik, I.Y., Lorenz, U., Chugreev, A., Behrens, B.A., Microstructure and wear behaviour of high alloyed hot-work tool steels 1.2343 and 1.2367 under thermomechanical loading. IOP Conf. Ser. Mater. Sci. Eng., 2019, 629: 012011. doi:10.1088/1757-899X/629/1/012011
  • [6] Kula, P., Wolowiec, E., Pietrasik, R., Dybowski, K., Januszewicz, B., Non-steady state approach to the vacuum nitriding for tools, Vacuum, 2013, 88: 1–7. doi:10.1016/j.vacuum.2012.08.001
  • [7] Wołowiec-Korecka, E., Michalski, J., Januszewicz, B., The stability of the layer nitrided in low-pressure nitriding process, Coatings, 2023, 13: 257. doi:10.3390/coatings13020257
  • [8] Roliński, E., Plasma-assisted nitriding and nitrocarburizing of steel and other ferrous alloys, In Thermochemical surface engineering of steels, Elsevier, Amsterdam, Netherlands, 2015, pp. 413–457
  • [9] Çetinarslan, C.S., Sahin, M., Karaman Genç, S., Sevil, C., Mechanical and metallurgical properties of ion-nitrided austenitic-stainless steel welds. Mater. Sci.-Pol., 2012, 30: 303–312. doi:10.2478/s13536-012-0052-x
  • [10] Spies, H.J., Dalke, A., Case structure and properties of nitrided steels, In Comprehensive materials processing, Elsevier, Amsterdam, Netherlands, 2014, pp. 439–488
  • [11] Weidner, A., Lippmann, T., Biermann, H., Crack initiation in the very high cycle fatigue regime of nitrided 42CrMo4 steel, J. Mater. Res., 2017, 32: 4305–4316. doi:10.1557/jmr.2017.308
  • [12] Leskovšek, V., Podgornik, B., Nolan, D., Modelling of residual stress profiles in plasma nitrided tool steel. Mater. Charact., 2008, 59: 454–461. doi:10.1016/j.matchar.2007.03.009
  • [13] Hawryluk, M., Lachowicz, M., Janik, M., Ziemba, J., Gronostajski, Z., Influence of the nitrided layer thickness of dies made of two types of tool steel used in hot extrusion of valve forgings made of nickel–chromium steel on the durability of these tools. Arch. Civ. Mech. Eng., 2021, 21: 151. doi:10.1007/s43452-021-00301-8
  • [14] Wolowiec-Korecka, E., Michalski, J., Kucharska, B., Kinetic aspects of low-pressure nitriding process, Vacuum, 2018, 155: 292–299. doi:10.1016/j.vacuum.2018.06.025
  • [15] Yan, P., Chen, K., Wang, Y., Zhou, H., Peng, Z., Jiao, L., et al., Design and performance of property gradient ternary nitride coating based on process control. Materials, 2018, 11: 758. doi:10.3390/ma11050758
  • [16] Widomski, P., Kaszuba, M., Sokołowski, P., Lange, A., Walczak, M., Długozima, M., et al., Nitriding of hard faced layers as a method of improving wear resistance of hot forging tools, Arch. Civ. Mech. Eng., 2023, 23: 241. doi:10.1007/s43452-023-00778-5
  • [17] Widomski, P., Kaszuba, M., Dobras, D., Zindulka, O., Development of a method of increasing the wear resistance of forging dies in the aspect of tool material, thermo-chemical treatment and PVD coatings applied in a selected hot forging process, Wear, 2021, 477: 203828. doi:10.1016/j.wear.2021.203828
  • [18] Barrallier, L., Classical nitriding of heat treatable steel, In Thermochemical surface engineering of steels, Elsevier, Amsterdam, Netherlands, 2015, pp. 393–412
  • [19] Youn, K.T., Rhyim, Y.M., Yang, W.J., Lee, J.H., Lee, C.G., Evaluation of thermal fatigue properties of surface treated AISI H13 steel for aluminum die-casting, Key Eng. Mater., 2006, 326–328: 1173–1176. doi:10.4028/www.scientific.net/KEM.326-328.1173
  • [20] Kundalkar, D., Mavalankar, M., Tewari, A., Effect of gas nitriding on the thermal fatigue behavior of martensitic chromium hot-work tool steel, Mater. Sci. Eng.: A., 2016, 651: 391–398. doi:10.1016/j.msea.2015.10.007
  • [21] Somers, M.A.J., Christiansen, T.L., Nitriding of steels. In Encyclopedia of materials: metals and alloys, Elsevier, Amsterdam, Netherlands, 2022, pp. 173–189
  • [22] Liu, Z.Q., Chen, Y.X., Li, D.X., Hei, Z.K., Hashimoto, H., Microstructural investigation on the precipitation of α″ nitrides and α″ → γ′ nitride transformation in ionnitrided pure iron, Metall. Mater. Trans. A., 2001, 32: 2681–2688. doi:10.1007/s11661-001-1020-y
  • [23] Manfridini, A.P.A., Godoy, C., Avelar-Batista Wilson, J.C., Auad, M.V., Surface hardening of IF steel by plasma nitriding: effect of a shot peening pretreatment, Surf. Coat. Technol., 2014, 260: 168–178. doi:10.1016/j.surfcoat.2014.09.064
  • [24] Wołowiec-Korecka, E., Carburising and nitriding of iron alloys, Springer Nature Switzerland, Cham, 2024
  • [25] Mittemeijer, E.J., Vogels, A.B.P., van der Schaaf, P.J., Aging at room temperature of nitrided α-iron, Scr. Metall., 1980, 14: 411–416. doi:10.1016/0036-9748(80)90336-1
  • [26] Kardonina, N.I., Yurovskikh, A.S., Kolpakov, A.S., Transformations in the Fe – N system, Met. Sci. Heat. Treat., 2011, 52: 457–467. doi:10.1007/s11041-010-9301-y
  • [27] Cheng, L., Mittemeijer, E.J., The tempering of ironnitrogen martensite; dilatometric and calorimetric analysis, Metall. Trans. A., 1990, 21: 13–26. doi:10.1007/BF02656420
  • [28] Typek, J., Guskos, N., Zolnierkiewicz, G., Guskos, A., Karolina, K., Pelka, R., et al., FMR study of samples obtained by nitriding and nitrides reduction of nanocrystalline iron. Mater. Sci.-Pol., 2016, 34: 6–12. doi:10.1515/msp-2016-0014
  • [29] Malinov, S., Böttger, A.J., Mittemeijer, E.J., Pekelharing, M.I., Somers, M.A.J., Phase transformations and phase equilibria in the Fe-N system at temperatures below 573 K, Metall. Mater. Trans. A., 2001, 32: 59–73. doi:10.1007/s11661-001-0102-1
  • [30] Basso, R.L.O., Pastore, H.O., Schmidt, V., Baumvol, I.J.R., Abarca, S.A.C., de Souza, F.S., et al., Microstructure and corrosion behaviour of pulsed plasma-nitrided AISI H13 tool steel. Corros. Sci., 2010, 52: 3133–3139. doi:10.1016/j.corsci.2010.05.036
  • [31] Gontijo, L.C., Machado, R., Miola, E.J., Casteletti, L.C., Nascente, P.A.P., Characterization of plasma-nitrided iron by XRD, SEM and XPS, Surf. Coat. Technol., 2004, 183: 10–17. doi:10.1016/j.surfcoat.2003.06.026
  • [32] Lee, T.H., Oh, C.S., Lee, M.K., Han, S.W., Nitride precipitation in salt-bath nitrided interstitial-free steel, Mater. Charact., 2010, 61: 975–981. doi:10.1016/j.matchar.2010.06.011
  • [33] Salas, O., Oseguera, J., Garcí, N., Figueroa, U., Nitriding of an H13 die steel in a dual plasma reactor, J. Mater. Eng. Perform., 2001, 10: 649–655. doi:10.1361/105994901770344502
  • [34] Somers, M.A.J., Development of compound layer and diffusion zone during nitriding and nitrocarburizing of iron and steels. In Comprehensive materials processing, Elsevier, Amsterdam, Netherlands, 2014, pp. 413–437
  • [35] Wang, B., Zhao, X., Li, W., Qin, M., Gu, J., Effect of nitrided-layer microstructure control on wear behaviour of AISI H13 hot work die steel, Appl. Surf. Sci., 2018, 431: 39–43. 10.1016/j.apsusc.2017.03.185
  • [36] Gonzalez-Moran, A.K., Naeem, M., Hdz-García, H.M., Granda-Gutiérrez, E.E., Ruíz-Mondragón, J.J., Alvarez-Vera, M., et al., Improved mechanical and wear properties of H13 tool steel by nitrogenexpanded martensite using current-controlled plasma nitriding, J. Mater. Res. Technol., 2023, 25: 4139–4153. doi:10.1016/j.jmrt.2023.06.221
  • [37] Kochmański, P., Długozima, M., Baranowska, J., Structure and properties of gas-nitrided, precipitation-hardened martensitic stainless steel, Materials, 2022, 15: 907. doi:10.3390/ma15030907
  • [38] Jung, K.S., Schacherl, R.E., Bischoff, E., Mittemeijer, E.J., Normal and excess nitrogen uptake by iron-based Fe–Cr–Al alloys: the role of the Cr/Al atomic ratio, Philos. Mag., 2011, 91: 2382–2403. doi:10.1080/14786435.2011.563760
  • [39] Mittemeijer, E.J., Nitriding of binary and ternary iron-based alloys, In Thermochemical surface engineering of steels, Elsevier, Amsterdam, Netherlands, 2015, pp. 313–340
  • [40] Miyamoto, G., Tomio, Y., Aota, H., Oh-ishi, K., Hono, K., Furuhara, T., Precipitation of nanosized nitrides in plasma nitrided Fe–M (M = Al, Cr, Ti, V) alloys, Mater. Sci. Technol., 2011, 27: 742–746. doi:10.1179/1743284710Y.0000000014
  • [41] Miyamoto, G., Suetsugu, S., Shinbo, K., Furuhara, T., Surface hardening and nitride precipitation in the nitriding of Fe-M1-M2 ternary alloys containing Al, V, or Cr, Metall. Mater. Trans. A., 2015, 46: 5011–5020. doi:10.1007/s11661-015-3133-8
  • [42] Gallego, J.M., Grachev, S.Y., Borsa, D.M., Boerma, D.O., Écija, D., Miranda, R., Mechanisms of epitaxial growth and magnetic properties of γ’-Fe4N(100) films on Cu(100), Phys. Rev. B., 2004, 70: 115417. doi:10.1103/PhysRevB.70.115417
  • [43] Rashev, T.V., Eliseev, A.V., Zhekova, L.T., Bogev, P.V., High-nitrogen steel, Steel Transl., 2019, 49: 433–439. doi:10.3103/S0967091219070106
  • [44] Birol, Y., Response to thermal cycling of plasma nitrided hot work tool steel at elevated temperatures, Surf. Coat. Technol., 2010, 205: 597–602. doi:10.1016/j.surfcoat.2010.07.035
  • [45] Schreiber, G., Rensch, U., Oettel, H., Blawert, C., Mordike, B.L., Thermal stability of PI3 nitrided surface layers on ferritic steels, Surf. Coat. Technol., 2003, 169–170: 447–451. doi:10.1016/S0257-8972(03)00188-9
  • [46] Frączek, T., Michalski, J., Kucharska, B., Opydo, M., Ogórek, M., Phase transformations in the nitrided layer during annealing under reduced pressure, Arch. Civ. Mech. Eng., 2021, 21: 48. doi:10.1007/s43452-020-00158-3
  • [47] Liapina, T., Leineweber, A., Mittemeijer, E.J., Nitrogen redistribution in ε/γ′-iron nitride compound layers upon annealing, Scr. Mater., 2003, 48:1643–1648. doi:10.1016/S1359-6462(03)00136-2
  • [48] Liapina, T., Leineweber, A., Mittemeijer, E.J., Phase transformations in iron-nitride compound layers upon low-temperature annealing: diffusion kinetics of nitrogen in ε- and γ′-iron nitrides, Metall. Mater. Trans. A., 2006, 37: 319–330. doi:10.1007/s11661-006-0003-4
  • [49] Liapina, T., Leineweber, A., Mittemeijer, E.J., Phase transformations in ε-/γ’-iron nitride compound layers in the temperature range of 613 K–693 K. Defect. Diffus. Forum, 2005, 237–240: 1147–1152. doi:10.4028/www.scientific.net/DDF.237-240.1147
  • [50] Somers, M.A.J., Mittemeijer, E.J., Layer-growth kinetics on gaseous nitriding of pure iron: evaluation of diffusion coefficients for nitrogen in iron nitrides. Metall. Mater. Trans. A., 1995, 26: 57–74. doi:10.1007/BF02669794
  • [51] Hawryluk, M., Gronostajski, Z., Kaszuba, M., Krawczyk, J., Widomski, P., Ziemba, J., et al., Wear mechanisms analysis of dies used in the process of hot forging a valve made of high nickel steel, Arch. Metall. Mater., 2018, 63(4): 1963–1974. doi:10.24425/amm.2018.125131
  • [52] Dworzak, Ł., Hawryluk, M., Janik, M., The impact of the lubricant dose on the reduction of wear dies used in the forging process of the valve forging, Materials, 2021, 14: 212. doi:10.3390/ma14010212
  • [53] Hawryluk, M., Gronostajski, Z., Ziemba, J., Janik, M., Górski, P., Lisowski, M., Support possibilities for 3D scanning of forging tools with deep and slim impressions for an evaluation of wear by means of replication methods, Materials, 2020, 13: 1881. doi:10.3390/ma13081881
  • [54] Hawryluk, M., Lachowicz, M., Zwierzchowski, M., Janik, M., Gronostajski, Z., Filipiak, J., Influence of the grade of hot work tool steels and its microstructural features on the durability of punches used in the closed die precision forging of valve forgings made of nickel-chrome steel, Wear, 2023, 528–529: 204963. doi:10.1016/j.wear.2023.204963
  • [55] Hawryluk, M., Lachowicz, M., Łukaszek-Sołek, A., Lisiecki, Ł., Ficak, G., Cygan, P., Structural features of fatigue crack propagation of a forging die made of chromium–molybdenum–vanadium tool steel on its durability, Materials, 2023, 16: 4223. doi:10.3390/ma16124223
  • [56] Lachowicz, M.M., Zwierzchowski, M., Smolik, J., Hawryluk, M., Influence of oxidation on the tribological wear of hot work tool steels in sliding contact: implications for the forming process, Arch. Civ. Mech. Eng., 2024, 25: 59. doi:10.1007/s43452-024-01115-0
  • [57] Hawryluk, M., Janik, M., Zwierzchowski, M., Lachowicz, M.M., Krawczyk, J., Possibilities of increasing the durability of dies used in the extrusion process of valve forgings from chrome-nickel steel by using alternative materials from hot-work tool steels, Materials, 2024, 17: 346. doi:10.3390/ma17020346
  • [58] Gronostajski, Z., Kaszuba, M., Hawryluk, M., Marciniak, M., Zwierzchowski, M., Mazurkiewicz, A., et al., Improving durability of hot forging tools by applying hybrid layers, Metalurgija, 2015, 54: 687–690
  • [59] Hawryluk, M., Janik, M., Gronostajski, Z., Berełkowski, A., Zwierzchowski, M., Lachowicz, M., et al., Possibilities of increasing the durability of punches used in the forging process in closed dies of valve forgings by using alternative materials from tool steels and sintered carbides, Materials, 2024, 17: 370. doi:10.3390/ma17020370
  • [60] Lojkowski, W., Djahanbakhsh, M., Bürkle, G., Gierlotka, S., Zielinski, W., Fecht, H.-J., Nanostructure formation on the surface of railway tracks, Mater. Sci. Eng.: A., 2001, 303: 197–208. doi:10.1016/S0921-5093(00)01947-X
  • [61] Österle, W., Rooch, H., Pyzalla, A., Wang, L., Investigation of white etching layers on rails by optical microscopy, electron microscopy, X-ray and synchrotron X-ray diffraction, Mater. Sci. Eng.: A., 2001, 303: 150–157. doi:10.1016/S0921-5093(00)01842-6
  • [62] Ramesh, A., Melkote, S.N., Allard, L.F., Riester, L., Watkins, T.R., Analysis of white layers formed in hard turning of AISI 52100 steel, Mater. Sci. Eng.: A., 2005, 390: 88–97, doi:10.1016/j.msea.2004.08.052
  • [63] Freisinger, M., Rojacz, H., Trausmuth, A., Mayrhofer, P.H., Severe plastic deformed zones and white etching layers formed during service of railway wheels, Metall. Microstruct. Anal., 2023, 12: 515–527. doi:10.1007/s13632-023-00967-x
  • [64] Hawryluk, M.R., Lachowicz, M., Janik, M., Gronostajski, Z., Stachowicz, M., Effect of the heating temperature of a nickel-chromium steel charge material on the stability of the forging process and the durability of the die, Arch. Metall. Mater., 2022, 68(2): 711–722. doi:10.24425/amm.2023.142453
  • [65] Schneider, R.S.E., Austenitic nitriding and nitrocarburizing of steels. In Thermochemical surface engineering of steels, Elsevier, Amsterdam, Netherlands, 2015, pp. 373–400e
  • [66] Lebrun, J.P., Plasma-assisted processes for surface hardening of stainless steel. In Thermochemical Microstructural stability and thermal fatigue behaviour of nitrided layers 16 surface engineering of steels, Elsevier, Amsterdam, Netherlands, 2015, pp. 615–632
  • [67] Czerwiec, T., Andrieux, A., Marcos, G., Michel, H., Bauer, P., Is “expanded austenite” really a solid solution? Mössbauer observation of an annealed AISI 316L nitrided sample, J. Alloy. Compd., 2019, 811: 151972. doi:10.1016/j.jallcom.2019.151972
  • [68] Baranowska, J., Characteristic of the nitride layers on the stainless steel at low temperature, Surf. Coat. Technol., 2004, 180–181: 145–149. doi:10.1016/j.surfcoat.2003.10.056
  • [69] Yurovskikh, A.S., Kardonina, N.I., Kolpakov, A.S., Phase transformations in nitrided iron powders, Met. Sci. Heat. Treat, 2015, 57: 507–514. doi:10.1007/s11041-015-9913-3
  • [70] Hawryluk, M., Lachowicz, M., Janik, M., Ziemba, J., Gronostajski, Z., Preliminary studies of increasing the durability of forging tools subjected to various variants of surface treatment used in the hot die forging process of producing valve forgings, Eng. Fail. Anal., 2023, 143: 106886. doi:10.1016/j.engfailanal.2022.106886
  • [71] Peng, W.Y., Wu, X.C., Min, Y.A., Xu, L.P., Effect of the compound layer of plasma nitriding on thermal fatigue behavior of 4Cr5MoSiV1 die steel, J. Shanghai Univ. (Engl. Ed.) 2003, 7: 87–92. doi:10.1007/s11741-003-0060-5
  • [72] Pellizzari, M., Molinari, A., Straffelini, G., Thermal fatigue resistance of gas and plasma nitride 41CrAlMo7 steel, Mater. Sci. Eng.: A., 2003, 352: 186–194. doi:10.1016/S0921-5093(02)00867-5
  • [73] Gronostajski, Z., Widomski, P., Kaszuba, M., Zwierzchowski, M., Polak, S., Piechowicz, Ł., et al., Influence of the phase structure of nitrides and properties of nitrided layers on the durability of tools applied in hot forging processes, J. Manuf. Process., 2020, 52: 247–262. doi:10.1016/j.jmapro.2020.01.037
  • [74] Widenmeyer, M., Hansen, T.C., Meissner, E., Niewa, R., Formation and decomposition of iron nitrides observed by in situ powder neutron diffraction and thermal analysis, Z. Anorg. Allg. Chem., 2014, 640: 1265–1274. doi:10.1002/zaac.201300676
  • [75] Hubicki, R., Richert, M., Wiewióra, M., An experimental study of temperature effect on properties of nitride layers on X37CrMoV51 tool steel used in extrusion aluminium industry, Materials, 2020, 13: 2311. doi:10.3390/ma13102311
  • [76] Çelik, A., Efeoğlu, I., Sakar, G., Microstructure and structural behavior of ion-nitrided AISI 8620 steel, Mater. Charact., 2001, 46: 39–44. doi:10.1016/S1044-5803(00)00091-7
  • [77] Xiong, X.C., Redjaïmia, A., Gouné, M., Pearlite in hypoeutectoid iron–nitrogen binary alloys, J. Mater. Sci., 2009, 44: 632–638. doi:10.1007/s10853-008-3054-7
  • [78] Mittemeijer, E.J., Fundamentals of nitriding and nitrocarburizing, In Steel heat treating fundamentals and processes, ASM International, Novelty, OH, United States, 2013, pp. 619–646
  • [79] de Souza Lamim, T., Salvaro, D., Giacomelli, R.O., Binder, R., Binder, C., Klein, A.N., et al., Plasma nitrided compound layers in sintered parts: microstructures and wear mechanisms, Wear, 2021, 477:203810. doi:10.1016/j.wear.2021.203810
  • [80] Kovacı, H., Yetim, A.F., Baran, Ö., Çelik, A., Fatigue crack growth analysis of plasma nitrided AISI 4140 low-alloy steel: part 1-constant amplitude loading, Mater. Sci. Eng.: A., 2016, 672: 257–264. doi:10.1016/j.msea.2016.07.002
  • [81] Kovacı, H., Yetim, A.F., Baran, Ö., Çelik, A., Fatigue crack growth analysis of plasma nitrided AISI 4140 low-alloy steel: part 2-variable amplitude loading and load interactions, Mater. Sci. Eng.: A., 2016, 672: 265–275. doi:10.1016/j.msea.2016.07.003
  • [82] Persson, A., Hogmark, S., Bergström, J., Thermal fatigue cracking of surface engineered hot work tool steels, Surf. Coat. Technol., 2005, 191: 216–227doi:10.1016/j.surfcoat.2004.04.053
  • [83] Pellizzari, M., Molinari, A., Straffelini, G., Thermal fatigue resistance of plasma duplex-treated tool steel, Surf. Coat. Technol., 2001, 142–144: 1109–1115. doi:10.1016/S0257-8972(01)01223-3
  • [84] Kulkarni, K., Srivastava, A., Shivpuri, R., Bhattacharya, R., Dixit, S., Bhat, D., Thermal cracking behavior of multilayer LAFAD coatings on nitrided die steels in liquid aluminum processing, Surf. Coat. Technol., 2002, 149: 171–178. doi:10.1016/S0257-8972(01)01452-9
  • [85] Haase, B., Dong, J., Irretier, O., Bauckhage, K., Influence of steel surface composition on gas nitriding mechanism, Surf. Eng., 1997, 13: 251–256. doi:10.1179/sur.1997.13.3.251
  • [86] Baranowska, J., Importance of surface activation for nitrided layer formation on austenitic stainless steel, Surf. Eng., 2010, 26: 293–298, doi:10.1179/026708410X12550773058027
  • [87] Somers, M.A.J., Christiansen, T.L., Gaseous processes for low temperature surface hardening of stainless steel, In Thermochemical surface engineering of steels, Elsevier, 2015, pp. 581–614
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4c483ace-15d4-49e0-9591-50790e052456
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.