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Abstract

Seminars are offered to students for education in various disciplines. The seminars may be limited in terms of the maximum
number of participants, e.g., to have lively interactions. Due to capacity limitations, those seminars are often offered several
times to serve the students’ demands. Still, some seminars are more popular than others and it may not be possible to grant
access to all interested students due to capacity limitations. In this paper, a simple, but efficient random selection using
key objectives (SEKO) assignment strategy is proposed which achieves the following goals: (i) efficiency by utilizing all
available seminar places, (ii) satisfying all students by trying to assign at least one seminar to each student, and (iii) fairness
by considering the number of assigned seminars per student. We formulate various theoretical optimization models using
integer linear programming (ILP) and compare their solutions to the SEKO assignment based on a real-world data set. The
real-world data set is also used as the basis for generating large data sets to investigate the scalability in terms of demand and
number of seminars. Furthermore, the first-in first-out (FIFO) assignment, as a typical implementation of fair assignments in
practice, is compared to SEKO in terms of utilization and fairness. The results show that the FIFO assignment suffers in real-
world situations regarding fairness, while the SEKO assignment is close to the optimum and scales regarding computational
time in contrast to the ILP.

Keywords: assignment problem, limited capacity, utilization, at least on seminar (ALOS) ratio, fairness, integer linear

programming (ILP), first-in first-out (FIFO) assignment, random selection using key objectives (SEKO)

1. Introduction

Seminars, workshops, group work, or other interactive courses are part of university education processes,
and also part of private or professional further education. Students or interested persons, in general, want
to participate in such activities, which are, however, often limited in terms of the maximum number of
participants for different reasons. For example, workshops and group work with lively interactions re-
quire a proper size, as noted by Al Mulhim and Eldokhny [1] in the context of project-based learning
environments or Chen and Liu [4] for asynchronous online discussion in higher education. Other reasons
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for a limited number of available places may be organizational reasons such as room capacities or avail-
able technical equipment. Due to the place or capacity limitations, such activities and courses are often
offered multiple times (in parallel or in different time slots) to serve the students’ demands. Still, some
seminars are more popular than others and it may not be possible to grant access to all those interested
due to capacity limitations.

In this article, we consider a general assignment problem of students to multiple seminars with limited
capacity according to their preferences, taking into account possibly several offers for seminars of the
same type. For the sake of simplicity, we will just speak of students and seminars, but our solution
approaches can be applied in a more general context. In the planning phase of organizing the seminars
in a semester, the historical popularity of seminars in terms of the number of requests is considered from
the previous semester. Accordingly, several seminars of the same type may then be offered for popular
seminars. Students may request several seminars of the same type, but of course, only a single seminar of
the same type may be assigned. The requests by all students are captured and considered in an assignment
strategy.

A common and simple strategy, which is often used in practice, is a first-in first-out (FIFO) strategy,
also referred to as first-come first-serve (FCFS) strategy. In a different context of queueing systems, such
a FIFO strategy is considered fair, since job requests arrive in a queue and all jobs are served in the
order they arrive. This is referred to as order fairness. Avi-Itzhak et al. [2] review different types of
fairness and discuss the FIFO strategy which is the fairest under the concept of order fairness. However,
in the context of queues, a FIFO strategy is unfair if the job requests have different demands and require
different capacities of the queue [14]. To this end, the concept of proportional fairness is also considered
in queues: it is fair for large jobs to have large response times and for small jobs to have small response
times. Proportional fairness is, however, not directly applicable in our scenario. Instead, for our use
case of assigning students to seminars, fairness needs to consider the number of assigned seminars per
student in relation to the number of requested seminars. One of the contributions of this article is a proper
definition of fairness for our use case.

The FIFO strategy is a typical implementation in our case and is considered fair due to order fairness.
There is a registration start time and students then may register for seminars. The places in the workshops
are then assigned in a FIFO manner to students registered for that seminar until the capacity of the seminar
is reached. It is assumed that all students have the same opportunities to register for seminars. This is
however not true in practice. Some students may not be able to register soon after the registration starts
due to technical reasons, conflicting dates, or personal reasons. Hence, this may cause some unfairness.
In addition, students may be interested in several seminars and register for several workshops at the
same time; this is how registration interfaces are typically implemented: students select the seminars in
an online form and then register for all of the selected seminars at once by submitting the form. Then,
FIFO will cause additional unfairness: students registering early for many seminars will get all of them
assigned.

In this paper, a simple, but efficient random selection using key objectives (SEKO) assignment strategy
is proposed which achieves the following goals: (i) efficiency by utilizing all available seminar places, (ii)
satisfying all students by trying to assign at least one seminar (ALOS) to each student, and (iii) fairness by
considering the number of assigned seminars per student. We formulate various theoretical optimization
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models and compare their solutions to the SEKO assignment based on a real-world data set. The FIFO
assignment, which is often used in practice, is compared to SEKO in terms of utilization and fairness.
The results show that the FIFO assignment suffers in real-world situations regarding fairness, while the
SEKO assignment is close to the optimum. Furthermore, we investigate the scalability of integer linear
programming (ILP) concerning computational time and compare the performance of SEKO to the results
of the ILP. Thereby, the real-world data set is used as the basis for generating large data sets to investigate
the scalability.

Figure 1. Structure of this article and summary of the key results

Our key contributions to this article are as follows:

• definition of quantitative measures for key objectives: utilization, ALOS ratio, fairness;
• formulation of optimization problems by means of ILP;
• formulation of SEKO assignment: random selection using key objectives;
• simulative performance evaluation of SEKO and comparison to FIFO and optimum based on a real-

world data set from the year 2021;
• model to generate large data sets mimicking the characteristics of the real-world data set;
• analysis of the scalability of the ILP and SEKO concerning computational time.

The remainder of this article is structured as follows. Section 2 properly formulates the problem to be
solved and reviews related work in the context of assignment strategies, related optimization problems,
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and quantitative measures for key objectives. Section 3 introduces three different optimization prob-
lems and formulates the corresponding ILPs for maximizing utilization, the ALOS ratio, and fairness.
Section 4 explains the assignment strategies in practice and provides pseudo-code for the strategies. In
particular, the SEKO assignment is described in Section 4.2, along with a motivation of its ideas and
key objectives. Section 5 provides numerical data utilizing a real word data set of students’ registrations
for seminars and a systematic parameter sensitivity study is conducted. Section 6 evaluates the SEKO
and the ILP in terms of scalability. Thereby, the computational time, but also performance is assessed.
Section 7 concludes this work. A graphical visualization of the structure and the contents of this article
is provided in Figure 1.

2. Related work and problem formulation

First, we review related work on optimization problems close to ours. However, there is yet no optimiza-
tion problem that exactly captures our use case. Then, quantitative measures are considered and proposed
on utilization, fairness, and the ALOS ratio. Finally, the formulation of the seminar assignment problem
(SAP) which we are addressing in this article is given.

2.1. Assignment problem
The generalized assignment problem (GAP) is a well-known optimization problem. There are in general
n items and m knapsacks. A solution to the GAP finds the optimum assignment of each item to exactly
one of the m knapsacks. However, the capacity of any knapsack is limited. The generalized problem
considers different costs or weights of the items. In the special case of the assignment problem, all items
have the same costs. The GAP seems to be similar to our problem. There are n students who are allocated
to m seminars and the capacity of the seminars is limited. Each student has the same "cost" and occupies
one seminar place.

Cattrysse and Van Wassenhove [3] survey solution approaches for GAP and conclude that there is a
shortage of effective heuristics. Öncan [10] surveys literature with a different focus on GAP and its real-
life applications in various fields, like scheduling, telecommunication, facility location, transportation,
production planning, etc. In the paper, search algorithms, exact solution procedures, and simple heuristic
algorithms are revisited and evaluated. However, the GAP does not consider that there are preferences
of the students for which seminars to attend. Furthermore, a student may want to participate in several
seminars. Therefore, we cannot use existing GAP solutions for our problem.

The reviewer assignment problem (RAP) takes into account such preferences. In the RAP, review-
ers are assigned to do a scientific peer review of several manuscripts. The matching degree between
manuscripts and reviewers is thereby explicitly taken into account. Wanget al. [13] survey research on
RAP and its variations. They additionally discuss practical challenges for developing a RAP system.
Garg ey al.[6] consider the RAP for conferences where a bidding phase is included such that reviewers
express their preferences for which papers to review and which papers cannot be reviewed due to missing
expertise or personal conflict of interests. Garg et al. [6] also focus on fairness and load balance of the
assignments. Fairness considers hereby the quality of the assigned reviewers across all papers as well
as the number of assigned reviews according to the preferences of the referees. Related to our seminar
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assignment problem, the students are the referees and the bidding process captures the preferences of
students for which seminars to attend. The seminars are then the manuscripts to be reviewed which may
have a maximum number of reviews. However, the RAP is different. It takes into account coverage,
i.e., every paper should be reviewed a sufficient number of times. Hence, a seminar should be allocated a
sufficient number of times. This depends however on the preferences of the students. Instead of coverage,
the utilization of available seminar places is a key objective in practice. Furthermore, there are seminars
that are offered at different times. This does not happen in the RAP – this would result in a double sub-
mission at the same conference. In summary: the RAP problem does not match our seminar assignment
problem.

Having a closer look at assignment problems regarding courses, projects, or seminars at universities,
there are also various approaches existing. Roeder and Saltzman [12] propose schedule-based group
assignments where students are assigned to groups based on their availability. The goal is to assign every
student to exactly one group. Here, the key focus is to consider the availability of students such that they
can meet in a group.

Rezaeinia et al. [11] discuss an assignment problem arising in the allocation of students to business
projects in a master program. The students provide their preferences on the projects they want to work
on, placing focus on efficiency and fairness in the assignment problem. For integrating fairness in the
optimization problem, Jain’s index is used to quantify the utility of the assignment. Utility associated
with the assignment of a student to a specific project considers the preferences of the students in which
project to work. The students provide a ranking of the projects which reflects their utility. Efficiency is
then the sum of the utilities of the projects assigned to students. Hence, the goal is to optimize efficiency
(which we refer to as utilization) and fairness. There are again some key differences with the SAP. For
example, there is an upper bound and a lower bound on the number of students that are needed for a
project. Thereby, the capabilities of students are required (referred to as attributes) such that a project
can be successfully conducted. In our seminar assignment problem, we also have an upper bound and a
lower bound for the number of attendees per seminar, but there is no need to consider specific capabilities.
From that perspective, the optimization problem by Rezaeinia et al. [11] is more general and we may
additionally extend our problem to take into account attributes or capabilities in the future. However,
currently, this is not required in practice and we decided to skip this in our problem formulation. Fur-
thermore, the lower bound is also not required for our real-world data set. For the sake of simplicity, we,
therefore, skip this in our ILPs and assignment strategies, but this constraint can be added in a straight-
forward way. In contrast to the SAP, each student is assigned to a single project only in Rezaeinia et al.
[11]. Similarly, Magnanti and Natarajan [9] also address the problem of assigning students to projects
by considering efficiency and fairness as optimization criteria sequentially. However, they use a different
kind of fairness. The lexicographic max–min fairness criterion consists of minimizing the number of
students assigned to their least preferred project. This process is then repeated with the second-to-last
preference. Again, students are assigned to single projects only. In contrast, students may attend several
seminars in our scenario.

In summary, we conclude that none of the discussed problems and their variants matches our particular
seminar assignment problem and takes into account our key objectives. We close this gap in the literature
for the practically relevant seminar assignment problem.
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2.2. Quantitative measures
The SAP is based on key objectives and quantitative measures for them. The definition of quantitative
measures requires a proper notion of variables. The outcome of an assignment strategy is captured by the
binary variable yi, j indicating whether student i is assigned to seminar j (yi, j = 1); otherwise yi, j = 0.
There are n students and m seminars. Then, the assignment for all students and seminars is captured
in the assignment matrix y = (yi, j)n×m. A seminar j has sj available places. We define the set of all
students I = {i : i = 1, 2, . . . , n} and the set of all seminars J = {j : j = 1, 2, . . . , m}, respectively.

There may be several seminars that provide the same seminar contents but are, e.g., offered at different
times or in parallel. There are t different seminar types. For each seminar type k, the set of seminars
belonging to type k is referred to as Sk. Any student i ∈ I will be assigned at most one seminar for the
same seminar type k. This will be ensured by any assignment strategy. We define the set of all seminar
types K = {k : k = 1, 2, . . . , t}.

2.2.1. Utilization U

The utilization U or efficiency of the assignment quantifies the ratio of assigned places:

U(y) =

n∑
i=1

m∑
j=1

yi, j

m∑
j=1

sj

=

n∑
i=1

Ai

m∑
j=1

sj

(1)

with Ai being the number of assigned seminars for student i:

Ai =
m∑

j=1
yi, j ∀i ∈ I (2)

If the assignment y is clear from the context, we simply write U instead of U(y). It is clear that
0 ≤ U ≤ 1.

Note that the maximum possible utilization may be less than 100%, if there are fewer requests rj for
a seminar j than available places sj . In addition, a student may register for several seminars of the same
seminar type, but the student will get assigned only one seminar of the same seminar type. The maximum
possible utilization U∗ is formulated as a linear program problem in Section 3.1, see equation (12).

2.2.2. ALOS ratio L

In practice, it may be relevant for the satisfaction of the students that at least one seminar will be assigned
to each student. At the same time, fairness will be increased if the assignment strategy tries to assign
at least one seminar to students. Therefore, the proposed ALOS ratio measure quantifies the ratio of
students with at least one seminar

L(y) = 1
n

n∑
i=1

sign
(
Ai

)
(3)
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The signum function sign
(
Ai

)
returns sign

(
Ai

)
= 1, if Ai > 0; otherwise sign

(
Ai

)
= 0. If the

assignment y is clear, we simply write L instead of L(y).

2.2.3. Fairness index F

Our notion of fairness considers the variance of the number of assigned seminars Ai across the students
i = 1, . . . , n. One prominent measure is Jain’s fairness index provided by Jain et al. [8] based on the
coefficient of variation of the number of assigned seminars.

The mean number µy of assigned seminars is

µy = 1
n

n∑
i=1

Ai (4)

The standard deviation σy is defined as square root of the variance:

σ2
y =

(
1
n

n∑
i=1

Ai
2
)

− µ2
y (5)

The coefficient of variation is then
cy = σy

µy
(6)

and we finally arrive at Jain’s index:

J(y) = 1
1 + c2

y
. (7)

Jain’s index J ranges from 0 to 1. However, Jain’s index is not considering that there is a maximum
possible standard deviation. As an example, we consider n = 100 students and there are t = 5 seminar
types. Suppose that half of the students do not get any seminar (Ai = 0 for i = 1, . . . , 50); the other half
of students get k seminars (Ai = k for i = 51, . . . , 100). Then, Jain’s index is J = 0.5 independently of
the value k. It does not matter if 50% of the students get 1, 2, 3, 4, or 5 seminars assigned.

Therefore, we rely on a metric that was originally defined to quantify QoE fairness by Hoßfeld et al. [7].
This fairness index F (y) is a linear function of the standard deviation σy which takes into account the
maximum number t of seminars a single student can get assigned.

F (y) = 1 − 2σy

t
(8)

F (y) returns values in the interval [0; 1] with 0 being the most unfair and 1 being the most fair
assignment.

Consider the example from above. If half of the students get no seminar and the other half gets the
maximum number t = 5 assigned, then the most unfair situation is observed. The fairness index returns
F = 0 in that case. The fairest situation is achieved when all students get the same number Ai assigned.
Then, σy = 0 and F = 1 (and also J = 1). If 50% of the students get 1, 2, 3, 4, and 5 seminars assigned,
the fairness index F is 0.8, 0.6, 0.4, 0.2, and 0.0, respectively (remember Jain’s index is J = 0.5 in
those cases). Hence, the fairness index F is intuitive and properly quantifies fairness for the assignment
problem.
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2.3. Problem formulation: seminar assignment problem (SAP)
The following problem is addressed in this paper. There are n students requesting places for m seminars.
There are t different seminar types. For each seminar type k, the set of seminars belonging to type k is
referred to as Sk. The student’s requests for seminars are captured in a binary request variable xi, j for
student i ∈ I and seminar j ∈ J, where xi, j = 1 means that the student i requests seminar j. Then, the
requests for seminars by all students are captured in the request matrix x = (xi, j)n×m. An assignment
strategy y is to be defined with the following properties:

1. The students’ requests x are considered:

yi, j ≤ xi, j ∀i ∈ I, ∀j ∈ J . (9)

2. Any student i ∈ I will be assigned at most one seminar for the same seminar type k ∈ K:

∑
j∈Sk

yi, j ≤ 1 ∀i ∈ I, ∀k ∈ K . (10)

3. The utilization U(y) of the available seminar places reaches the maximum utilization U∗:

U(y) = U∗ (11)

4. The ALOS ratio L(y) shall be maximized.
5. The fairness index F (y) shall be maximized.
6. The concrete assignment of seminars to users shall be reproducible.

These goals are partly contrary. Perfect fairness is achieved if all users get no seminar assigned.

3. Optimization model: integer linear programming (ILP)

The assignment of the seminars with respect to the key objectives is found by means of integer linear
programming (ILP).

Table 1. Notations and variables used for the optimization problem

Variable Explanation
yi, j target assignment variable (binary); yi, j = 1 means that the seminar j is assigned to student i
xi, j request input data (binary); xi, j = 1 means that the student i requests seminar j

Ai assigned seminars (integer) for student i; it is Ai =
m∑

j=1
yi, j

Amax maximum number of seminars being assigned to a student [Amax = 99]
n number of different students [n = 103]
I set of all students I = {i : i = 1, 2, . . . , n}
m number of different seminars [m = 9]
J set of all seminars J = {j : j = 1, 2, . . . , m}
sj number of places in seminar j for j = 1, . . . , m [sj = 12 for all j]
t number of different seminar types [t = 5]
K set of all seminar types K = {k : k = 1, 2, . . . , t}
Sω set of seminars for seminar type ω for ω = 1, . . . , t [see Table 2]
1 The parameters of the real data set are given in [brackets].
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The first ILP maximizes the utilization, i.e., the number of assigned places to students, and is referred
to as MU. The resulting maximum utilization UMU is then used as a constraint in the other ILP problems.
The ILP MU + 1 provides an assignment that maximizes the ratio of students who are assigned at least
one seminar with the maximum utilization which can be achieved added as a constraint. The third ILP
MU + F aims at maximizing fairness while considering the maximum utilization as a constraint. Table 1
introduces the variables which are used in the optimization problems. An implementation of the three
different ILPs is available on Github1.

3.1. Maximum utilization problem (MU)
The first ILP maximizes the number of assigned seminars, i.e., the available seminar places are utilized
in the best possible way. The binary variable yi, j indicates whether student i is assigned to seminar j

which means yi, j = 1; otherwise yi, j = 0. Then, the objective function is the maximization of yi, j over
all n students and all m seminars. The resulting absolute utilization is UMU and the (relative) maximum
utilization is

U∗ = UMU

m∑
j=1

sj

(12)

The constraints of the MU problem are the number of available seminar places (equation (13b)) and
the students’ registrations to seminars (equation (13c)). A seminar j has sj places and therefore the sum

of assignments to all students must be less than the number of places:
n∑

i=1
yi, j < sj . This constraint is

added for any seminar j ∈ J. The final constraint considers the registrations xi, j of student i to seminar
j. A seminar is only assigned if a student has registered for it: yi, j ≤ xi, j . However, there may be
several seminars that provide the same seminar contents and belong to the same seminar type. There are
t different seminar types. For each seminar type k, the set of seminars belonging to type k is referred to
as Sk. Any student i ∈ I will be assigned at most one seminar for the same seminar type k ∈ K. Hence,
n · t constraints are added, see equation (13d). Finally, the maximum number of seminars which may be
assigned to a student may be limited. Hence, for each student i ∈ I, the sum of assigned seminars must
be less than Amax , see equation (13e). This results in optimization problem (13).

UMU = maximize
yi, j

n∑
i=1

m∑
j=1

yi, j (13a)

subject to
n∑

i=1
yi, j ≤ sj ∀j ∈ J, (13b)

yi, j ≤ xi, j ∀i ∈ I, ∀j ∈ J, (13c)∑
j∈Sk

yi, j ≤ 1 ∀i ∈ I, ∀k ∈ K, (13d)

m∑
j=1

yi, j ≤ Amax ∀i ∈ I (13e)

1https://github.com/hossfeld/sekoAssignment
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3.2. Assigning at least one seminar problem (MU + 1)
The ratio of students who are assigned at least one seminar is now maximized. To this end, we consider
the number Ai of seminars assigned to student i.

Ai =
m∑

j=1
yi, j , ∀i ∈ I (14)

The objective function is the maximization of sign
(
Ai

)
over all n students. The signum function just

indicates if a student has one or more seminars assigned and returns sign
(
Ai

)
= 1 in this case. The

constraints are identical to the MU optimization problem, but additionally, we ensure that the MU + 1
problem achieves the same utilization UMU as the MU problem (equation (15f)).

maximize
yi, j

n∑
i=1

sign
(
Ai

)
(15a)

subject to
n∑

i=1
yi, j ≤ sj ∀j ∈ J, (15b)

yi, j ≤ xi, j ∀i ∈ I, ∀j ∈ J, (15c)∑
j∈Sk

yi, j ≤ 1 ∀i ∈ I, ∀k ∈ K, (15d)

m∑
j=1

yi, j ≤ Amax ∀i ∈ I, (15e)

n∑
i=1

m∑
j=1

yi, j ≥ UMU with solution UMU from ILP (13) (15f)

Please note that the signum function is not supported by default by many ILP solvers. Therefore, we
need to reformulate the MU + 1 optimization problem by linearizing the signum function. The ILP

maximize
yi, j

n∑
i=1

sign
(
Ai

)
(16)

is identical to the following ILP with γ > m, e.g., γ = 1000 and m = 9.

maximize
bi

n∑
i=1

bi (17a)

subject to bi ≤ Ai ≤ γbi ∀j ∈ J (17b)

The constraint in equation (17b) ensures that at least one seminar is assigned if possible (otherwise
Ai = 0 and bi = 0), while the objective function in equation (17) maximizes the ratio of students with at
least one seminar.

3.3. Maximizing fairness and utilization problem (MU + F)
Fairness considers here the absolute deviation of the number Ai of assigned seminars to student i from the
mean number µ of assigned seminars. The total number of assigned seminars is reflected by the solution of
the MU optimization problem, i.e., UMU, again considered as a constraint in the fairness ILP (equation (19f)).
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µ = 1
n

n∑
i=1

Ai = 1
n

UMU (18)

The objective function of the maximizing fairness and utilization problem ( MU + F) is therefore to
minimize the sum of the absolute deviations from the mean across the students. The constraints are
identical to the MU + 1 problem

minimize
yi, j

n∑
i=1

|Ai − µ| (19a)

subject to
n∑

i=1
yi, j ≤ sj ∀j ∈ J, (19b)

yi, j ≤ xi, j ∀i ∈ I, ∀j ∈ J, (19c)∑
j∈Sk

yi, j ≤ 1 ∀i ∈ I, ∀k ∈ K, (19d)

m∑
j=1

yi, j ≤ Amax ∀i ∈ I, (19e)

n∑
i=1

m∑
j=1

yi, j ≥ UMU with solution UMU from ILP (13) (19f)

Since the absolute value function is nonlinear, the ILP is reformulated to linearize the objective function
properly. The ILP

minimize
yi, j

n∑
i=1

|Ai − µ| (20a)

is identical to the following ILP

minimize
yi, j, Ti

n∑
i=1

Ti (21a)

subject to Ti ≥ Ai − µ ∀i ∈ I, (21b)
−Ti ≤ Ai − µ ∀i ∈ I (21c)

Hence, the final ILP, which maximizes fairness in terms of the sum of absolute deviations of the mean
assigned seminars per student for a given utilization, considers the ILP from equation (21) plus the
constraints from equation (19).

Please note that the solution of the optimization problem MU + F includes the maximization of uti-
lization, i.e., the solution of the problem MU, as a constraint (19f). Furthermore, the maximization of
fairness, i.e., the minimization of the sum of the absolute deviations from the mean number of assigned
seminars across the students is the objective function (19a) of the problem MU + F. This implicitly takes
into account the ALOS ratio as we will see in the performance evaluation in Sections 5 and 6. In summary,
MU + F leads to the desired optimal solution for the SAP problem.
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4. Assignment algorithms in practice

For the SAP problem, the MU + F yields the optimal solution. However, the solution of the ILP may
not scale with the problem size in terms of the number of seminars or students due to computational
time. Therefore, we propose the SEKO assignment algorithm in practice, which is a heuristic with
low computational time, but which is close to the optimal solution by design. To be more precise, we
propose the SEKO assignment algorithm in practice to achieve efficiency and fairness. In this section,
we introduce and motivate the SEKO strategy. Later, the performance of the SEKO assignment strategy
and its computational time are discussed and compared to the ILPs in Sections 5 and 6.

In practice, however, the FIFO assignment is widely used. In fact, the simplest assignment strategy is
FIFO, such that registered students are assigned to seminars until the seminars’ capacities are exceeded.
However, FIFO fails to achieve a high ALOS ratio and fairness, which will be also shown in Sections 5
and 6. A description of the FIFO and SEKO algorithms is provided below. An implementation of both
algorithms is available on Github2.

4.1. FIFO assignment
The FIFO assignment works as follows. The seminars are sorted according to the number of requests in
ascending order. The assignment algorithms start with the least requested seminar j1 and finally assign
the students to the most popular seminar jm. The number of requests of seminar j is rj . The request
matrix x = (xi, j)n×m indicates if a student i has requested seminar j; then xi, j = 1; otherwise xi, j = 0.

rj =
n∑

i=1
xi, j for seminar j ∈ J (22)

The order in which the students are assigned to seminars is

J = (j1, j2, . . . , jm) with rj1 ≤ rj2 ≤ · · · ≤ rjm (23)

The assignment of students to seminars in ascending order ensures that maximum utilization is
achieved. There is a maximum number Amax of seminars being assigned to students. Consider that
a particular student i is assigned to a very popular seminar and thereby reaching Amax . The student i is
also interested in a less popular seminar j, for which fewer requests than seminar places are obtained:
rj ≤ sj . In that case, rj − 1 students are assigned and the capacity of the seminar j is not utilized. How-
ever, assigning first students to unpopular seminars avoids that situation and results in reaching maximum
utilization.

Note that the request matrix x as input for the assignment algorithm is sorted according to the time
τi the requests were made by the students i. Hence, τ1 < τ2 < · · · < τn and the first row represents
the first student requesting for seminars at time τ1. Then, the FIFO assignment strategy simply iterates
over the seminars j in the order J and assigns the sj seminar places to the first requesting students. Note
that min(sj, rj) seminar places are assigned, since less than sj places may be requested. Obviously, the
FIFO algorithm assigns all possible seminar places to interested students and achieves the maximum

2https://github.com/hossfeld/sekoAssignment
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utilization U∗ according to the MU ILP in equation (13). If a student i is assigned to seminar j, then
yi, j = 1; otherwise yi, j = 0.

In addition, the FIFO assignment also considers that several seminars of the same type may be offered.
If a student i is assigned to seminar j which is of seminar type ω, then the requests for seminars of the
same type for this student are removed in this iteration step: xi,κ = 0 for κ ∈ Sω. The set Sω contains
all seminars of the type ω and the seminar j ∈ Sω. Due to changing xi, j and rj , the order of seminars
has to be determined in each iteration step again. This is implemented in the FIFO assignment by simply
identifying in each iteration step the seminar j with the minimum number of requests rj , see lines 16–19
in Listing 2. Note that the FIFO assignment considers the maximum number Amax of seminars being
assigned to a student. Hence, in each iteration step, the list of eligible students is determined for the
corresponding seminar i. Eligible students have been assigned so far less than Amax seminars and are
interested in the seminar (xi, j = 1).

The assignment is captured in the assignment matrix y = (yi, j)n×m. A description of the algorithm
is Python-like pseudo code and is provided in Listing 2. As already mentioned, the maximum utilization
is reached: U(y) = U∗. However, fairness F (y) and the ALOS ratio L(y) are unclear for the FIFO
assignment y.

4.2. Proposed SEKO assignment

The proposed SEKO assignment follows a random selection approach to assign which students are as-
signed to a seminar. While the FIFO assignment considers the time when students are requesting semi-
nars, the SEKO approach ignores the timestamps. The underlying idea is to improve fairness in student
assignments to seminars. Not all students have the opportunity to register for seminars early after the
registration starts. In that case, such students will not be able to get to seminar places.

SEKO stands for random lection using key objectives that are
O1 – to maximize utilization U ,
O2 – to maximize the ratio of students with at least one seminar L,
O3 – to maximize fairness F .
The utilization objective O1 is reached by iterating over the seminars in ascending order of the number

of requests, as in the FIFO assignment. Hence, in each iteration step, the seminar j with the minimum
number of requests rj across all remaining seminars, not yet considered, is selected (see lines 17–20 in
Listing 1).

The fairness objective O3 is taken into account by adapting the probability pi to select a student i

based on the number of assigned seminars A
(k)
i so far in the kth assignment step. The assignments in

the kth assignment step are denoted as y
(k)
i, j and A

(k)
i =

m∑
j=1

y
(k)
i, j . Again, the set of eligible students is

determined in an iteration step for the seminar j. Eligible students E have not been assigned so far Amax

seminars and the students are interested in the seminar (xi, j = 1 for i ∈ E)

∀i ∈ E : A
(k)
i =

m∑
j=1

y
(k)
i, j < Amax and xi, j = 1 (24)
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First, the maximum number A(k) of assigned seminars is determined from the eligible students for
seminar j in this iteration step k

A(k) = max
i∈E

(Ai) (25)

Then, we define the variable p̃i which is the difference between the maximum number A(k) of seminars
being assigned in round k and the number A

(k)
i of currently assigned seminars for that student i. Note that

A
(k)
i ∈ {0, 1, . . . , A(k)}. This variable p̃i is later used to obtain a probability pi for randomly selecting

students to be assigned to a seminar. To obtain a probability, p̃i will be normalized by the sum of all
variables p̃i over all students i = 1, . . . , n, cf. equation (28). If students have already been assigned the
maximum number of seminars in round k, i.e., A

(k)
i = A(k), we ensure a (small) chance to be randomly

selected in this round by adding 1 in the following equation

p̃i = A(k) − A
(k)
i + 1 ∀i ∈ I (26)

For example, the maximum number of assigned seminars for eligible students is A(k) = 3 in step k.
Then, all students with A

(k)
i = 3 have the same p̃i = 1; for students with A

(k)
i = 2, the value (and thus

the probability pi) is doubled (p̃i = 2); for students with A
(k)
i = 1, the value is tripled (p̃i = 3). An

illustrative example is provided below showing the effect of taking into account the number of already
assigned seminars.

The ALOS objective O2 aims at maximizing the ratio of students who are assigned at least one seminar.
The SEKO assignment, therefore, multiplies the values p̃i by a factor α if a student i has not been assigned
any seminar so far (A(k)

i = 0). As default value, we use α = 100 in our evaluations

p̃i = α(A(k) − A
(k)
i + 1) = α(A(k) + 1) if A

(k)
i = 0 (27)

Finally, the values p̃i are normalized and we obtain the probability pi that a student is assigned to
seminar j in step k

pi = p̃i∑
l∈E

p̃l

such that
∑
l∈E

pl = 1 (28)

Now, we randomly select sj students out of the set of eligible students (without replacement) based
on the probabilities pi

3. Since we can pass a seed to the random number generator, the results are
reproducible – which may be important in practice to have reproducible pseudo-random assignments. Of
course, if the number of eligible students is less than sj , all eligible students are assigned. If a student i

is assigned to seminar j which is of seminar type ω, then the requests for seminars of the same type
for this student are removed in the iteration step. The assignment is captured in the assignment matrix
y = (yi, j)n×m. A description of the algorithm’s Python-like pseudo code is provided in Listing 1.

3The NumPy random number generator random.number.choice was used, but any algorithm for weighted random
sampling without replacement can be used, e.g., [5].

https://numpy.org/doc/stable/reference/random/generated/numpy.random.choice.html
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Illustrative example of the SEKO strategy

A simple scenario is considered to show how the SEKO strategy works and how the probabilities change
depending on the number of already assigned seminars. There are n = 25 students and m = 5 differ-
ent seminars. All students request a place in each of the five seminars. Each seminar has a capacity of
12 places. We consider now the probability πj, k that every student who has already been assigned j sem-
inars will be assigned the seminar in round k. Note πj, k is the sum of probabilities pi (equation (28)) for
all students with j seminars in round k. Assume z students have been assigned j seminars in round k,
then πj, k = zpi.

Round 1. No seminar has been assigned to any student. Hence, all students have the same probability of
π0, 1 = 1/n = 4% to be assigned to the first seminar. As a result, 12 students will be assigned to the
first seminar, while the other 13 students still have zero seminars.

Round 2. Now, the ALOS objective gets relevant. The 13 students without any seminar get a significantly
higher probability to be selected due to the factor α = 100. It is π0, 2 = 7.66%, while for the other
students with one seminar the probability is only π1, 2 = 0.04%. Thus, the probability is about 200
times higher for students without any seminar. It is very likely that 12 students without any seminar
get one assigned in this round.

Round 3. There are 24 students with one seminar and π1, 3 = 0.45%. There is one student without any seminar
and π0, 3 = 89.29%. Hence, it is likely that the student will get one seminar assigned. Then, there
are 11 more places which will be assigned to the students with one seminar so far.

Round 4. Hence, there will be 11 students with two seminars and π2, 4 = 2.56%. The remaining 14 students
have one seminar and π1, 4 = 5.13%. Thus, the probability is twice as high, i.e., π1, 4 = 2 · π2, 4 in
this round. This ensures that the objective on fairness is taken into account. Let us assume that 8
students with one seminar get a place in this round. Then four students with two seminars will get
a third seminar assigned.

Round 5. Now, the places for the last seminar are assigned. There are still 6 students with one seminar, 15
students have two seminars, 4 students have 3 seminars. The probabilities are π1,5 = 5.77% = 3π3, 5,
π3, 5 = 3.85% = 2π3, 5, and π3, 5 = 1.92%. The probabilities take into account the number of already
assigned seminars in a proper way. For example, the outcome of the random draw in this round may
lead to 5, 6, 13, 1 students with 1, 2, 3, 4, seminars, respectively.

As a result, all seminar places are assigned (U = 1) and every student has at least 1 seminar (L = 1). The
fairness index is in this case only about 0.66. It cannot be avoided that all students do not get the same
number of seminars assigned. There are 5 × 12 = 60 places, but 25 students requesting all seminars.
If all places are assigned, the minimal standard deviation is obtained if 15 students get 2 seminars and
10 students get 3 seminars, respectively. The mean number of seminars per student is 2.4. The standard
deviation of the optimal assignment is σ = 0.49. Hence, the fairness index is F = 1 − 2σ/5 = 0.80 for
a maximum number of 5 seminars to be assigned to a single student.

5. Performance evaluation for real-world data set

The performance evaluation is based on a real-world data set from the year 2021 (scenario REAL). We
additionally investigate a scenario where every student requests all seminars and modify the requests in
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the real-world data set (scenario ALL). The SEKO assignment is compared to the FIFO assignment as
well as the results from the optimization problems MU, MU + 1, MU + F.

5.1. Real-world data set
Our real word data set contains the requests x = (xi, j)n×m from 2021 for n = 103 students and m = 9
seminars. There are t = 5 different seminar types. The seminars of type ω = 1, 3, 4, 5 are offered two
times, e.g., S1 = {1, 2} or S5 = {8, 9}. Table 2 summarizes the parameters of the data set and the
popularity of seminars, expressed as number rj of requests per seminar j. Further the distribution nk of
the number of students who are requesting k seminars is provided.

Table 2. Real data set with requests of students for the different seminar types

Variable Parameter Value
n number of students 103
m number of seminars 9
t number of different seminar types 5
Ω total number of places 108
R total number of requests 171
ρ requests to places ratio 1.53
U∗ maximum utilization 98.14%
x request matrix x = (xi, j)n×m

k
nk

number of requests
number of students with k requests

1 2 3 4 5
64 20 12 4 3

j

cj

rj

seminar ID
seminar content
number of places per seminar j
number of requests per seminar j

1 2 3 4 5 6 7 8 9
1 1 2 3 3 4 4 5 5

12 12 12 12 12 12 12 12 12
10 13 19 15 13 29 27 20 25

5.2. Performance of assignment for real-world data set
Figure 2a shows the cumulative distribution function (CDF) of the ALOS ratio L (labeled as a ratio in
the legend) and the fairness index F for the SEKO assignment for 1000 different assignments. This is
compared to the deterministic optimal values from the optimization problem MU + F. We observe that the
performance of the SEKO strategy is close to the optimum and that the variance of the SEKO assignment
is rather small. We additionally compare this to the deterministic results from the FIFO assignment. We
see that the ALOS ratio and the fairness index are significantly lower for FIFO than for SEKO.

Figure 2b shows the key performance indicators for the different assignment strategies and optimiza-
tion problems. To be more precise, we are plotting the mean values for the SEKO assignment; the other
values are deterministic. In all cases, the maximum utilization is reached as already discussed. However,
we see that FIFO assignment leads to poor performance values regarding the ALOS ratio and fairness.
The optimization problem MU is not considering fairness and returns an arbitrary solution, yielding in
lower values for F and L. The differences between MU + 1 and MU + F are negligible. Again, we
see that the SEKO assignment is close to the optimum. Hence, we conclude that SEKO assignment is
performing very well in practice.
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Figure 2. Real-world scenario with given demands for the various assignment strategies:
a) the CDF of the ALOS ratio (RATIO) and the fairness index (FAIR) over 1000 different assignments of the SEKO strategy

compared to FIFO and the optimal assignment, b) for SEKO, the mean key performance indicators, averaged over 1000 runs,
is computed and compared to the deterministic values for FIFO and the solution of the optimization problems;

RATIO is an abbreviation for the ratio of students who are assigned at least one seminar (ALOS); FAIR stands for the fairness
index; MU reflects the results for the optimization problem which maximizes the number of assigned places; MU + 1 is the
solution when at least one seminar is assigned per student, while the capacity of the MU problem is ensured; MU + F is the

solution when fairness across students is maximized, while the capacity of the MU problem is ensured; OPT provides the
maximum, i.e., optimal, value over all three optimization problems

5.3. Student perspective on assignments

Figure 3a computes the probability that a student gets i seminars assigned for each simulation run. The
boxplot is over the simulation runs for the real data set. We see that most students get 1 seminar; however,
to utilize the capacity, some students get several seminars assigned. This requires of course that several
seminars are requested, cf. Table 2.

Figure 3. Student-centric evaluation of the real-world scenario with given demands for SEKO assignment:
a) boxplot over 1000 runs of the probability of getting assigned i seminars vs. i, b) boxplot over 1000

runs of the number of assigned seminars vs. the number of requested seminars per user;
there are n = 103 students and the SEKO assignment strategy is conducted 1000 times

Figure 3b correlates the number of requested and the number of assigned seminars. The more seminars
are requested the more seminars are assigned on average. The Pearson correlation coefficient is 0.81.
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However, please note the absolute numbers are close. For k requested seminars, the mean number mk of
assigned seminars is: m1 = 0.939, m2 = 1.072, m3 = 1.186, m4 = 1.316, m5 = 1.650.

The question arises whether students therefore will simply demand many more seminars to improve
the chances to get more seminars assigned. In practice, this may not be the case, since students will only
register for seminars where they can participate if there are, e.g., some kind of registration fees. However,
the ’all students request all seminars’ (ALL) scenario gives interesting insights into fairness.

5.4. All students request all seminars scenario
We now consider that every student is requesting all seminars. There are 108 places that can be filled by
103 students. Hence, in the fairest scenario, 98 students get 1 seminar and 5 get 2 seminars. This leads to
a maximum fairness F ∗ = 0.914. Figure 4a compares the optimal results from the MU + F assignment
with the SEKO and FIFO assignment for the real-world scenario and the ALL scenario. While the FIFO
assignment has worse performance in the ALL scenario than in the real scenario, the SEKO assignment
is still very close to the optimum.

Figure 4b shows the mean number of assigned seminars per user over 5000 simulation runs. The real
scenario reflects the requests by the users, yielding in several peaks. The ALL scenario nicely shows that
there are no differences among users.

Figure 4. Real world scenario (labeled as real) vs. scenario where all students request all seminars (all):
a) fairness, at least one seminar (ALOS) ratio, utilization; the figure shows the box plot for 5000 simulation runs

of the SEKO assignment strategy; the triangle visualizes the mean; the values for the optimal assignment
and the FIFO assignment are given; b) a mean number of assigned seminars per student; the 95% confidence interval

around the mean for the scenario all s plotted; however, the confidence intervals are very small and hardly visible

6. Scalability and parameter sensitivity study

The performance of the assignment strategies is evaluated for increasing demand and larger scenarios.
The performance of SEKO is compared to FIFO and the optimization problem MU + F. First, a parame-
ter sensitivity study and demand analysis is conducted. Then, the performance of SEKO is compared to
the optimal solution for data sets with a large number of seminars. We explicitly consider also the com-
putational time indicating the limits of the ILP in practice and the need for heuristics in large scenarios.
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6.1. Parameter sensitivity study and demand analysis
The demand analysis is conducted in which we are varying the number of requests per seminar and the
maximally assigned places Amax . Using the real-world data set, which has a ratio ρ of the total number
of requests to a total number of available seminar places of ρ = 1.53. Then, we vary the demand ratio ρ

and randomly draw requests according to the seminar popularity rj for the seminars j = 1, . . . , m, see
Table 2.

Figure 5. Real-world scenario with varying demands and maximally assigned places for the assignment strategies:
a) utilization of the available places, b) ratio of students with at least one seminar;

the demand is expressed as the ratio ρ of the number of requests to the number of available places;
with ρ = 1, the original demands from the data set are obtained;

the parameter m indicates the maximum number of places which are assigned to an individual student.

Figure 5a shows the utilization of the assignments depending on ρ. We see that for Amax = 2, the
real-world scenario utilizes all seminar places for all strategies if ρ ≥ 2. However, if only a single
seminar is allowed per user (Amax = 1 or m = 1 in the legend), then we see small differences. SEKO
is closer to the optimum than FIFO. However, this situation may be unrealistic, since we aim for 100%
utilization without such restrictions. Taking a closer look at the ALOS ratio, for m = 1, the behavior is
similar for the assignment strategies. However, for m ≥ 1, the FIFO strategy shows a significantly worse
performance than SEKO which is even worse with increasing demand ρ. The SEKO strategy, however,
is in all scenarios close to the optimum.

Figure 6. Fairness in a real-world scenario with varying demands and maximally assigned places:
a) fairness index of different assignments, b) difference to fairness index of optimal assignment
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Figure 6a is now considering the fairness index of the different assignments depending on the requests
to places ratio ρ. Figure 6b visualizes the difference between the optimal fairness index of the SEKO and
the FIFO assignment, taking into account a varying number of maximally assigned seminars per user
(Amax = 1 or m = 1 in the legend). Again, we see that the FIFO strategy strongly suffers in terms of
fairness besides the ALOS ratio. In contrast, the SEKO strategy is very close to the optimum. Smaller
differences are due to the random drawing and assigning of students to seminars.

In summary: the SEKO assignment achieves perfect utilization or efficiency, while fairness and user
satisfaction concerning the ALOS ratio are very close to the optimum. Hence, we propose a very simple
heuristic to solve the seminar assignment problem.

6.2. Assessment of scalability and performance for larger data sets
One critical aspect of solving ILPs is computational time. In order to stress the computation of the ILPs,
a data set with a large number of seminars and students is required. To this end, we have created a model
to generate large data sets based on the real-world data set. Then, we evaluated the computational time
of the ILP “Maximizing Fairness and Utilization Problem” ( MU + F).

6.2.1. Model for realistic larger data sets

Based on the real data, we have developed a synthetic model to generate a data set with an arbitrary
number of seminars, while keeping the characteristics of the real data set as provided in Table 2: number
of requests per seminar, how often a seminar is offered, constant number of seminar places, constant ratio
of number of students to number of seminars. To scale the data set, the number of seminars is adjusted
which is the input parameter of the large data set model.

Table 3. Generated large data set with requests of students for the different seminar types

Variable Parameter Value
m∗ number of seminars input parameter

n∗ number of students
nm∗

m
c∗

j number of places for a seminar j = 1, . . . , m∗ 12
Ω∗ total number of seminars 12m∗

r∗
j number of requests per seminar j

drawn randomly from a discrete uniform distribution
r∗

j ∼ DU(8, 30), see fitting in Figure 7a
j
d∗

j

seminar content is offered j times
with probability d∗

j

1 2 3
0.3 0.6 0.1

R∗ total number of requests R∗ =
m∗∑
j=1

r∗
j with mean E[R∗] = E[r∗

j ]m∗ = 19m∗

ρ∗ requests to places ratio ρ∗ = R∗/Ω∗ with expected ratio E[R∗]/(12m∗) ≈ 1.583

k
n∗

k

number of requests
probability that student requests k seminars

1 2 3 4 5
64
103

20
103

12
103

4
103

3
103

1 We use the same notion for the variables and parameters of the model as for the real data set in Table 2, but mark them
with an asterisk, e.g., m∗ is the number of seminars of the large scale data set, while m is the number of seminars of
the real-world data set. The original parameters of the real-world data set are provided in Table 2.

[h]

Table 3 provides an overview of the model parameters and how we adjusted them related to the real-
world data set. We use the same notion for the variables and parameters of the model as for the real data
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set in Table 2, but mark them with ’∗’. For example, the key input parameter m∗ reflects the number of
seminars of the large scale data set, while m is the number of seminars of the real-world data set. The
number of students generated in the larger data set is then n∗ = n · m∗

m
with the parameters n, m as

specified in Table 2. Hence, we vary the number of seminars and keep the ratio of students to seminars
constant. The number c∗

j of places per seminar j is kept constant.
Note that we sample how often a seminar is offered multiple times according to the distribution in

Table 3. Thereby, the distribution is selected according to the real-world data set. A seminar is offered
j times with probability d∗

j ; we set d∗
1 = 0.3, d∗

2 = 0.6, d∗
3 = 0.1. Hence, on average a seminar is offered

1.8 times, which is the average value from the real-world data set. The probability distribution function
is depicted in Figure 7b.

Furthermore, the requests per seminar are randomly drawn. To this end, the number of requests
per seminar is fitted with a discrete uniform distribution. Figure 7a shows the cumulative distribution
function (CDF) of the number of requests per seminar. The square markers indicate the measurements
from the real-world data set, while the solid line and the dot markers show the CDF for the discrete
uniform distribution in the range between 8 and 30 requests per seminar j: r∗

j ∼ DU(8, 30). Then, the
expected number of requests per seminar is E[r∗

j ] = 19. As we can see, the fitting is appropriate for our
purposes to randomly draw the number of requests per seminar for an arbitrary number m∗ of seminars.
Thus, the expected characteristics of the generated data set are identical to the real-world data set.

Figure 7. Probability distributions for generating the large data set based on real-world data set in Table 2:
a) fitting the number of requests per seminar with a discrete uniform distribution in the range

between 8 and 30 requests per seminar, b) discrete random probability distributions that a student requests
several seminars (left blue bar) and that a seminar is offered multiple times (right orange bar)

6.2.2. Assessment of the computational time for larger data sets

In the following, we compare the computational times for solving the MU + F optimization problem as
well as the SEKO strategy to assign students to seminars according to their requests. The number of semi-
nars was varied from 25 to 500 in steps of 25. In addition, we considered 10 seminars as smallest number
of seminars, reflecting the size of the real-world data set. The software and hardware specifications of
the machines for conducting the computational time measurements are in the appendix in Table 4.

Figure 8a shows a box plot of the computational time to solve the ILP MU + F over several runs
on a logarithmic scale. The maximum computational time was limited to 1200 s to solve the ILP. This
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results in 21 values of the number of seminars which were repeated 17 times. In total, solving the ILP
for all parameters and repetitions required 31 h and 14.4 min. In contrast, the SEKO strategy required
a total computational time of 1.5 min only. The boxplots show that the computational time is significantly
increasing with respect to the number of seminars and therefore the number of students requesting seminars.
The computational time for MU + F and SEKO show similar behavior but on different time scales.

We take a closer look at the scalability of both assignment strategies. Figure 8b shows the average
computational time over the several runs on a linear scale and we see a strong increase for the ILP. For
the SEKO strategy, the increase is not visible on the linear scale. For the ILP, we can see that for 500
seminars, the maximum computational time of 1200 s is already reached. Solving the ILP is simply not
scaling with the problem size. To support this claim, we have fitted the measurement points and obtained
the following power functions f(m) = amk to obtain the computational time (in s) depending on the
number m of seminars.

fMU+F(m) = 3.08 × 10−6m3.17 (29)
fSEKO(m) = 9.49 × 10−8m2.59 (30)

Although both fitting functions follow a power function, the exponent k is significantly larger for solving
the ILP than for using a simple heuristic. In addition, the scaling factor a is more than 32 times larger
for solving the ILP. As a consequence, the computational time for solving the ILP is not scaling with the
number of seminars. For m = 5000 seminars, the computational time is 27 569 min = 459.48 h for the
ILP and 6.14 min for the SEKO strategy, respectively.

Figure 8. Computational time over several runs; the maximum computational time was limited to 1200 s:
a) box plot of the computational time, b) mean computational time

The strong increase in the computational time to solve the ILP shows the need for heuristics like
the SEKO strategy in case of a large number of seminars. However, the question remains if the SEKO
strategy is close to the optimum in the large-scale scenario.

6.2.3. Performance comparison for larger data sets

The optimization problem ( MU + F) which maximizes fairness while maximizing utilization returns the
desired solution in practice. Per definition, the MU + F problem provides the maximum utilization, since
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this is a constraint of the optimization problem. Furthermore, the fairness index is maximized for MU +
F, which includes also that the ALOS ratio is high.

As already discussed, the SEKO strategy leads to maximum utilization per design. For the real-world
data set, we have already seen that the SEKO strategy is very close to this optimal solution (Section 5).
However, the question is how the SEKO strategy performs for larger data sets. To this end, we now
consider the ALOS ratio and the fairness index of the SEKO strategy in comparison to MU + F for the
large data set in Figure 9.

Figure 9. Performance comparison for larger data sets generated according to the model
in Section 6.2: a) scatter plot of the ALOS ratio, b) fairness index averaged over several runs.

Note that the range on the y-axis is very small to make the differences visible

Figure 9a shows the ALOS ratio for MU + F on the x-axis and for the SEKO strategy on the y-axis,
respectively. Each plot in the scatter plot reflects a single generated request matrix, where the number of
seminars is varied from 25 to 500 in steps of 25. Each configuration is repeated several times resulting
in different request matrices. The dashed line indicates the ALOS ratio from the MU + F optimization.
It can be seen that the SEKO strategy is always below MU + F, but the difference is rather small. In
particular, the ALOS ratio is above 90% in all cases.

Figure 9b compares the fairness index depending on the number of seminars for the MU + F and the
SEKO assignment, respectively. To be more precise, the average fairness index over the several runs is
plotted. Again, we see that the SEKO performance is close to the optimum in the large data set scenario.
The higher the number of seminars is, the higher the expected fairness index is. This is reasonable since
a higher number of seminars gives more flexibility for distributing the available seminar places. From the
results, we conclude that the performance of the SEKO strategy is scaling with the number of seminars
and is close to the optimal results of the MU + F strategy. However, the computational efforts are much
lower for the SEKO assignment than for solving the MU + F optimization problem.

7. Conclusions

The problem investigated in this article is the assignment of students to seminar places taking into account
the requests of students, the limited capacity of seminar places, as well as multiple offers of the same
seminar. We define quantitative measures for key objectives of the assignment strategies which are the
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utilization of available seminar places, the ratio of users with at least one seminar, and fairness in terms
of the number of assigned seminars. Various optimization problems were formulated by means of ILP to
obtain the maximum performance values for utilization, ALOS ratio, and fairness.

A popular assignment strategy is FIFO assignment due to its simplicity. However, based on a real-
world data set and a parameter sensitivity study we showed that the FIFO strategy strongly suffers in terms
of fairness and ALOS ratio. Therefore, we provided the SEKO strategy which is based on an iterative
random selection of students to seminars by taking into account the number of already assigned seminars.
This achieves almost the maximum potential fairness in real word scenarios, but also in artificial scenarios
where all users are requesting all seminars. In particular, the SEKO strategies enforces that the ALOS
ratio is maximized which is also improving fairness and satisfaction of students with the assignment.
Our numerical results of SEKO are based on a simulative performance evaluation while the ILP are
numerically solved with a linear program. The results show that the FIFO assignment suffers in real-
world situations regarding fairness, while the SEKO assignment is close to the optimum obtained by the
ILP. To investigate the scalability concerning the computational time to solve the ILP, a model is derived
to generate large data sets containing a desired number of seminars. The model reflects the characteristics
of the real-world data set. As a result, we have seen that the ILP is not scaling with the problem size,
which requires a heuristic like our SEKO approach. In contrast, the SEKO approach scales concerning
the computational time and is also close to the optimum for larger scenarios.

In practice, however, the MU + F optimization problem may be used if the problem size is limited in
terms of number of seminars and students. This will provide the best assignment in terms of utilization
and fairness. Still, it may be difficult to explain how the assignment was done for some audiences. This
is another advantage of the SEKO approach which allows a simple, but meaningful explanation to the
students or other people – besides its simplicity and low computational efforts, although yielding very
good performance. SEKO randomly selects students by drawing a dice which takes into account how
many seminars are already assigned. This is easy to understand and may be well perceived by people
which are not familiar with optimization problems and their solutions.
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A. Pseudo code of FIFO and SEKO assignment strategy

Listing 1 The SEKO assignment strategy in Python-like pseudo code

1 def assignmentSEKO (n, # number of users (int)
2 m, # number of seminars (int)
3 s, # number of places in seminar j (array of size m)
4 x, # request matrix for user i and seminar j (size n × m)
5 S , # set of seminars with same content type k (array of size

t)
6 Amax , # maximum number of seminars being assigned to user (int)
7 α # factor increases prob. to have at least one seminar (float)
8 ):
9

10 # initialize assignment matrix of size n × m
11 y = zeros ((n,m)) # y[i,\,j]==1 means that user is is assigned to seminar j
12
13 # list of remaining seminars
14 L = range (m) # seminars are numbered from 0,..,m-1
15
16 while L is not empty: # iterate over seminars in ascending order
17 # determine seminar from remaining with minimum number of requests
18 r = x[:,L].sum(axis=0) # number of requests r_i for i in L
19 w = argmin (r) # determine next (least popular ) seminar out of L
20 i = L.pop(w) # seminar i is returned and removed from list L
21
22 registeredUsers = argwhere (x[:,i]>0) # list of users registered for i
23 # set of users with max. number of seminars assigned
24 alreadyMaximumAssignedSeminars = argwhere (y.sum(axis=1) >= Amax )
25 eligibleUsers = setdiff ( registeredUsers , alreadyMaximumAssignedSeminars )
26
27 # assign all eligible users to seminar , if enough places available
28 if len( eligibleUsers ) <= s[i]:
29 y[ eligibleUsers ,i] = 1 # users are assigned to seminar i
30
31 # delete other seminars of same content type from user requests
32 for s in Si: x[ eligibleUsers ,s] =0
33
34 else: # randomly select users for seminar i based on probabilities
35 A = y[ eligibleUsers ,:].sum(axis=1) # list of assigned seminar

places
36 curMax = max(A) # currently maximum number of assigned seminars
37 p = ( curMax +1.0-A) # array of ( unnormalized ) prob ’s to select user
38
39 # take care of users who were not yet assigned any seminars
40 noseminarsofar = (A==0)
41 p[ noseminarsofar ] *= α # increase prob. by factor α
42 p = p/p.sum () # normalize probabilities
43
44 # randomly select si users out of the set of eligible users ( without

replacement ) based on the
probabilities

45 select = random . choice ( eligibleUsers , replace =False , size=s[i], p=p
)

46
47 y[select ,i] = 1 # randomly selected users are assigned to seminar i
48
49 # delete other seminars of same content type from user requests
50 for s in Si: x[select ,s] =0
51
52 return y # assignment matrix for user i and seminar j (size n × m)
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Listing 2 The FIFO assignment strategy in Python-like pseudo code

1 def fifoAssignment (n, # number of users (int)
2 m, # number of seminars (int)
3 s, # number of places in seminar j (array of size m)
4 x, # request matrix for user i and seminar j (size n × m)
5 S , # set of seminars with same content type k (array of size

t)
6 Amax # maximum number of seminars being assigned to user (int)
7 ):
8
9 # initialize assignment matrix of size n × m

10 y = zeros ((n,m)) # y[i,\,j]==1 means that user is is assigned to seminar j
11
12 # list of remaining seminars
13 L = range (m) # seminars are numbered from 0,..,m-1
14
15 while L is not empty: # iterate over seminars in ascending order
16 # determine seminar from remaining with minimum number of requests
17 r = x[:,L].sum(axis=0) # number of requests r_i for i in L
18 w = argmin (r) # determine next (least popular ) seminar out of L
19 i = L.pop(w) # seminar i is returned and removed from list L
20
21 registeredUsers = argwhere (x[:,i]>0) # list of users registered for i
22 # set of users with max. number of seminars assigned
23 alreadyMaximumAssignedSeminars = argwhere (y.sum(axis=1) >= Amax )
24 eligibleUsers = setdiff ( registeredUsers , alreadyMaximumAssignedSeminars )
25
26 # take the first s[i] user requests from the request matrix
27 select = eligibleUsers [:s[i]]
28 y[select ,i] = 1 # # users are assigned to seminar i
29
30 # delete other seminars of same content type from user requests
31 for s in Si: x[select ,s] =0
32
33 return y # assignment matrix for user i and seminar j (size n × m)

B. Software and hardware specifications
for assessing the computational times

Table 4. Specification of the hardware and software
used to solve the ILP and assign students using the SEKO strategy

Hardware Specification

Processor Intel(R) Core(TM) i7-9700K CPU @ 3.60GHz
CPU clock speed 3.60 GHz
RAM 32 GB
Operating system Windows 10 Pro, Version 21H2, 64bit OS
Python version 3.7.11
NumPy version 1.21.5
SciPy version 1.7.3
Pandas version 1.3.5
MIPs version 1.13.0 (Python tools for Modeling and Solving Mixed-Integer Linear Programs)
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