PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Droplet impact in icing conditions – the influence of ambient air humidity

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The subject of the present paper is the applicability of hydrophobic surfaces for passive anti-icing protection. The experiments were focused on freezing droplets and on various droplet impingement and deformation scenarios. Droplet impact was investigated using high-speed camera for surfaces with different physico-chemical properties. To investigate the difference in droplet behavior on the surfaces with different wettability the steel and the aluminum plates were used and compared with specially designed surfaces characterized by a low surface energy. The influence of air humidity on droplet freezing was confirmed. The effective prevention of icing was observed only if humidity was removed from the system during the experiment.
Rocznik
Strony
127--142
Opis fizyczny
Bibliogr. 29 poz.
Twórcy
autor
  • Institute of Aeronautics and Applied Mechanics, Warsaw University of Technology, Nowowiejska 24, 00-665 Warsaw, Poland
autor
  • Institute of Aeronautics and Applied Mechanics, Warsaw University of Technology, Nowowiejska 24, 00-665 Warsaw, Poland
autor
  • Institute of Aeronautics and Applied Mechanics, Warsaw University of Technology, Nowowiejska 24, 00-665 Warsaw, Poland
autor
  • Institute of Aeronautics and Applied Mechanics, Warsaw University of Technology, Nowowiejska 24, 00-665 Warsaw, Poland
autor
  • Department of Materials Technology and Chemistry, University of Łodź, Pomorska 163, 90-236 Łodź, Poland
autor
  • Department of Materials Technology and Chemistry, University of Łodź, Pomorska 163, 90-236 Łodź, Poland
  • Department of Materials Technology and Chemistry, University of Łodź, Pomorska 163, 90-236 Łodź, Poland
Bibliografia
  • 1. A.M. Worthington, On the forms assumed by drops of liquids falling vertically on a horizontal plate, Proceedings of the Royal Society of London, 25, 261–272, 1876.
  • 2. H. Liu, Science and Engineering of Droplets, Fundamentals and Applications, Noyes Publications, New York, USA, 2000.
  • 3. M. Rein, J.P. Delplanque, The role of air entrainment on the outcome of drop impast on a solid surface, Acta Mechanica, 201, 105–118, 2008.
  • 4. A.L. Yarin, Drop impact dynamics: splashing, spreading, receding, bouncing. Annual Review of Fluid Mechanics, 38, 159–192, 2006.
  • 5. C. Clanet, C. Beguin, D. Richard, D. Quere, Maximal deformation of an impacting drop, Journal of Fluid Mechanics, 517, 199–208, 2004.
  • 6. D. Bartolo, C. Josserand, D. Bonn, Retraction dynamics of aqueous drops upon impact on non-wetting surfaces, Journal of Fluid Mechanics, 545, 329–338, 2005.
  • 7. F. Chevy, A. Chepelianskii, D. Quere, E. Raphael, Liquid Hertz contact: Softness of weakly deformed drops on non-wetting substrates, Europhysics Letters, 100, (5), 54002, 2012.
  • 8. S. Yun, J. Hong, K.H. Kang, Suppressing drop rebound by electrically driven shape distortion, Physical Review E, 87, (3), 2013.
  • 9. K. Okumura, F. Chevy, D. Richard, D. Quere, C. Clanet, Water spring: A model for bouncing drops, Europhysics Letters, 62, (2), 237–243, 2003.
  • 10. K.K. Varanasi, T. Deng, M. Hsu, N. Bhate, Hierarchical superhydrophobic surfa ces resist water droplet impact, Technical Proceedings of the 2009 NSTI Nanotechnology Conference and Expo, 2009.
  • 11. D. Bartolo, F. Boumrirene, E. Verneuil, A. Buguin, P. Silberzan, S. Moulinet, Bouncing or sticky droplets: Impalement transitions on superhydrophobic micropatterned surfaces, Europhysics Letters, 74, (2), 299–305, 2006.
  • 12. S.F. Lunkad, V.V. Buwa, K.D.P. Nigam, Numerical simulations of drop impact and spreading on horizontal and inclined surfaces, Chemical Engineering Science, 62, (24), 7214–7224, 2007.
  • 13. R. Rioboo, M. Marengo, C. Tropea, Time evolution of liquid drop impact onto solid, dry surfaces, Experiments in Fluids, 33, 112–124, 2002.
  • 14. L. Zhang, R.D. Deegan, P. Brunet, J. Eggers, Wavelength selection in the crown splash, Physics of Fluids, 22, 122105, 2010.
  • 15. L. Xu, W.W. Zhang, S.R. Nagel, Drop splashing on a dry smooth surface, Physical Review Letters, 94, (184505), 1–4, 2005.
  • 16. D. Gueyffier, S. Zaleski, Finger formation during droplet impact on a liquid film, Comptes Rendus de l’Academie des Sciences, Series IIB Mechanics Physics Astronomy, 326, 839–844, 1998.
  • 17. R. Krechetnikov, G.M. Homsy, Crown-forming instability phenomena in the drop splash problem, Journal of Colloid and Interface Science, 331, 555, 2009.
  • 18. A.L. Yarin, D.A. Weiss, Impact of drops on solid surfaces, selfsimilar capillary waves, and splashing as a new type of kinematic discontinuity, Journal of Fluid Mechanics, 283, 141, 1995.
  • 19. M.M. Driscoll, S.R. Nagel, Ultrafast Interference imaging of air in splashing dynamics, Physical Review Letters, 107, 2011.
  • 20. S. Jung, M.K. Tiwari, D. Poulikakos, Frost halos from supercooled water droplets, Proceedings of the National Academy of Sciences of the United States of America, 109, (40), 16073–16078, 2012.
  • 21. H. Wang, L. Tang, X. Wu, W. Dai, Y. Qiu, Fabrication and anti-frosting performance of super hydrophobic coating based on modified nano-sized calcium carbonate and ordinary polyacrylate, Applied Surface Science, 253, (22), 8818–8824, 2007.
  • 22. S.A. Kulinich, S. Farhadi, K. Nose, X. W. Du, Superhydrophobic surfaces: are they really ice-repellent?, Langmuir, 27, (1), 25–29, 2011.
  • 23. S.A. Kulinich, M. Farzaneh, How wetting hysteresis influences ice adhesion strength on superhydrophobic surfaces, Langmuir, 25, (16), 8854–8856, 2009.
  • 24. K. Rykaczewski, S. Anand, S.B. Subramanyam, K.K. Varanasi, Mechanism of frost formation on lubricant-impregnated surfaces, Langmuir, 29, (17), 5230–5238, 2013.
  • 25. M. Psarski, J. Marczak, G. Celichowski, G. Sobieraj, K. Gumowski, F.L. Zhou, Hydrophobization of epoxy nanocomposite surface with 1H,1H,2H,2H-perfluorooctyltrichlorosilane for superhydrophobic properties, Central European Journal of Physics, 10, (5), 1197–1201, 2012.
  • 26. A. Mongruel, V. Daru, F. Feuillebois, S. Tabakova, Early post-impact time dynamics of viscous drops onto a solid dry surface, Physics of Fluids, 21, 032101, 2009.
  • 27. K. Range, F. Feuillebos, Influence of surface roughness on liquid drop impact, Journal of Colloid and Interface Science, 203, 16–30, 1998.
  • 28. R.B. Bird, W.E. Stewart, E.N. Lightfoot, Transport Phenomena, John Wiley & Sons, Inc., 2002.
  • 29. S. Tabakova, F. Feuillebois, On the solidification of a supercooled liquid droplet lying on a surface, Journal of Colloid and Interface Science, 272, 225–234, 2004.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4c407844-2368-4a1d-aa49-0ceab4484b01
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.