PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A hierarchical classification method for automatic sleep scoring using multiscale entropy features and proportion information of sleep architecture

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Background: Sleep scoring is a critical step in medical researches and clinical applications. Traditional visual scoring method is based on the processing of physiological signals, such as electroencephalogram (EEG), electrooculogram (EOG) and electromyogram (EMG), which is a time consuming and subjective procedure. It is an urgent task to develop an effective method for automatic sleep scoring. Method: This paper presents a hierarchical classification method for automatic sleep scoring by combining multiscale entropy features with the proportion information of the sleep architecture. Based on a three-layer classification scheme, sleep is categorized into five stages (Awake, S1, S2, SWS and REM). Specifically, the first layer is a standard SVM which performs classification between Awake and Sleep, while the second and third layers are implemented by combining probabilistic output SVM with proportion-based clustering. Multiscale entropy (MSE) from electroencephalogram (EEG) is extracted to represent signal characteristics in multiple temporal scales. Results: The proposed method is evaluated with 20 sleep recordings, including 10 subjects with mild difficulty falling asleep and 10 healthy subjects. The overall accuracy of the proposed method is 91.4%. Compared with traditional methods, the classification accuracy of the proposed method is more balanced and the global performance is much better. The dataset includes both healthy subjects and subjects with sleep disorders, which means the presented method has good generalization capacity. Experimental results demonstrate the feasibility of the attempt to introduce proportion information into automatic sleep scoring.
Twórcy
autor
  • State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China
autor
  • State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
autor
  • State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China
autor
  • State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China
autor
  • Shanghai Children's Hospital, Children's Hospital of Shanghai Jiaotong University, Shanghai, China
autor
  • Shanghai Children's Hospital, Children's Hospital of Shanghai Jiaotong University, Shanghai, China
autor
  • State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China
Bibliografia
  • [1] Holland J, Dement W, Raynal D. Polysomnography: a response to a need for improved communication. Association for the Psychophysiological Study of Sleep. 1974. p. 121.
  • [2] Wolpert EA. A manual of standardized terminology, techniques and scoring system for sleep stages of human subjects. Arch Gen Psychiatry 1969;20(2):246.
  • [3] Silber MH, Ancoli-Israel S, Bonnet MH, Chokroverty S, Grigg- Damberger MM, Hirshkowitz M, et al. The visual scoring of sleep in adults. J Clin Sleep Med 2007;3(2):121–31.
  • [4] Stanus E, Lacroix B, Kerkhofs M, Mendlewicz J. Automated sleep scoring: a comparative reliability study of two algorithms. Electroencephalogr Clin Neurophysiol 1987;66 (4):448–56.
  • [5] Norman RG, Pal I, Stewart C, Walsleben JA, Rapoport DM. Interobserver agreement among sleep scorers from different centers in a large dataset. Sleep 2000;23(7):901–8.
  • [6] Agarwal R, Gotman J. Computer-assisted sleep staging. IEEE Trans Biomed Eng 2001;48(12):1412–23.
  • [7] Tagluk ME, Sezgin N, Akin M. Estimation of sleep stages by an artificial neural network employing EEG, EMG and EOG. J Med Syst 2010;34(4):717–25.
  • [8] Khalighi S, Sousa T, Pires G, Nunes U. Automatic sleep staging: a computer assisted approach for optimal combination of features and polysomnographic channels. Expert Syst Appl 2013;40(17):7046–59.
  • [9] Özşen S. Classification of sleep stages using class-dependent sequential feature selection and artificial neural network. Neural Comput Appl 2013;23(5):1239–50.
  • [10] Fraiwan L, Lweesy K, Khasawneh N, Wenz H, Dickhaus H. Automated sleep stage identification system based on time–frequency analysis of a single EEG channel and random forest classifier. Comput Methods Programs Biomed 2012;108(1):10–9.
  • [11] Acharya UR, Chua EC-P, Chua KC, Min LC, Tamura T. Analysis and automatic identification of sleep stages using higher order spectra. Int J Neural Syst 2010;20(6):509–21.
  • [12] Bajaj V, Pachori RB. Automatic classification of sleep stages based on the time–frequency image of EEG signals. Comput Methods Programs Biomed 2013;112(3):320–8.
  • [13] Herrera LJ, Fernandes CM, Mora AM, Migotina D, Largo R, Guillén A, et al. Combination of heterogeneous EEG feature extraction methods and stacked sequential learning for sleep stage classification. Int J Neural Syst 2013;23 (3):1350012.
  • [14] Rodríguez-Sotelo JL, Osorio-Forero A, Jiménez-Rodríguez A, Cuesta-Frau D, Cirugeda-Roldán E, Peluffo D. Automatic sleep stages classification using EEG entropy features and unsupervised pattern analysis techniques. Entropy 2014;16 (12):6573–89.
  • [15] Liang S-F, Kuo C-E, Hu Y-H, Pan Y-H, Wang Y-H. Automatic stage scoring of single-channel sleep EEG by using multiscale entropy and autoregressive models. IEEE Trans Instrum Meas 2012;61(6):1649–57.
  • [16] Liang S-F, Kuo C-E, Lee Y-C, Lin W-C, Liu Y-C, Chen P-Y, et al. Development of an EOG-based automatic sleep-monitoring eye mask. IEEE Trans Instrum Meas 2015;64 (11):2977–85.
  • [17] Hsu Y-L, Yang Y-T, Wang J-S, Hsu C-Y. Automatic sleep stage recurrent neural classifier using energy features of EEG signals. Neurocomputing 2013;104:105–14.
  • [18] Flexer A, Gruber G, Dorffner G. A reliable probabilistic sleep stager based on a single EEG signal. Artif Intell Med 2005;33 (3):199–207.
  • [19] Doroshenkov L, Konyshev V, Selishchev S. Classification of human sleep stages based on EEG processing using hidden Markov models. Biomed Eng 2007;41(1):25–8.
  • [20] Adnane M, Jiang Z, Yan Z. Sleep–wake stages classification and sleep efficiency estimation using single-lead electrocardiogram. Expert Syst Appl 2012;39(1):1401–13.
  • [21] Wu H-t, Talmon R, Lo Y-L. Assess sleep stage by modern signal processing techniques. IEEE Trans Biomed Eng 2015;62(4):1159–68.
  • [22] Lajnef T, Chaibi S, Ruby P, Aguera P-E, Eichenlaub J-B, Samet M, et al. Learning machines and sleeping brains: automatic sleep stage classification using decision-tree multi-class support vector machines. J Neurosci Methods 2015;250:94–105.
  • [23] Sousa T, Cruz A, Khalighi S, Pires G, Nunes U. A two-step automatic sleep stage classification method with dubious range detection. Comput Biol Med 2015;59:42–53.
  • [24] Voss U. Functions of sleep architecture and the concept of protective fields. Rev Neurosci 2004;15(1):33–46.
  • [25] Kemp B, Zwinderman AH, Tuk B, Kamphuisen HA, Oberye JJ. Analysis of a sleep-dependent neuronal feedback loop: the slow-wave microcontinuity of the EEG. IEEE Trans Biomed Eng 2000;47(9):1185–94.
  • [26] Goldberger AL, Amaral LAN, Glass L, Hausdorff JM, Ivanov PCh, Mark RG, et al. PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation 2000;101(23):e215–20.
  • [27] Costa M, Goldberger AL, Peng C-K. Multiscale entropy analysis of complex physiologic time series. Phys Rev Lett 2002;89(6):068102.
  • [28] Costa M, Goldberger AL, Peng C-K. Multiscale entropy analysis of biological signals. Phys Rev E 2005;71(2): 021906.
  • [29] Burioka N, Miyata M, Cornélissen G, Halberg F, Takeshima T, Kaplan DT, et al. Approximate entropy in the electroencephalogram during wake and sleep. Clin EEG Neurosci 2005;36(1):21–4.
  • [30] Vapnik V. The nature of statistical learning theory; 2013.
  • [31] Chang C-C, Lin C-J. LIBSVM: a library for support vector machines. ACM Trans Intell Syst Technol 2011;2(3):27.
  • [32] Ronzhina M, Janoušek O, Kolářová J, Nováková M, Honzík P, Provazník I. Sleep scoring using artificial neural networks. Sleep Med Rev 2012;16(3):251–63.
  • [33] Zhu G, Li Y, Wen PP. Analysis and classification of sleep stages based on difference visibility graphs from a single- channel EEG signal. IEEE J Biomed Health Inform 2014;18 (6):1813–21.
  • [34] Hassan AR, Bashar SK, Bhuiyan MIH. On the classification of sleep states by means of statistical and spectral features from single channel electroencephalogram. 2015 International Conference on Advances in Computing, Communications and Informatics (ICACCI). 2015. pp. 2238–43.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4c3e8396-a39e-45e2-b512-44a197f0e625
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.