PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Improvement of the stainless steel electropolishing process by organic additives

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The influence of organic additives on the process of surface electropolishing of AISI 304 type steel was determined. Additives were selected in initial potentiodynamic tests pursuant to the plateau analysis on the current/potential curves. The assessment of the operational effectiveness of additives consisted in determining the relationship between surface gloss after electropolishing and the mass loss of the sample and in determining surface roughness. The applied electropolishing bath consisted of a mixture of concentrated acids: H3PO4  and H2SO4 and the following organic additives were used: triethylamine, ethanolamine, diethanolamine, triethanolamine, diethylene glycol monobutyl ether and glycerol. The best electropolishing result, i.e. low roughness and high gloss of stainless steel surface with a relatively low mass loss of the sample at the same time were obtained for baths containing triethanolamine.
Rocznik
Strony
76--81
Opis fizyczny
Bibliogr. 23 poz., rys., tab.
Twórcy
autor
  • Wroclaw University of Environmental and Life Sciences, Institute of Environmental Engineering, pl. Grunwaldzki 24a, 50-365 Wrocław, Poland
autor
  • Wroclaw University of Science and Technology, Department of Machine Tools and Mechanical Technologies, Łukasiewicza 5, 50-370 Wrocław, Poland
autor
  • Wroclaw University of Science and Technology, Department of Advanced Material Technologies, Smoluchowskiego 21, 50-372 Wrocław, Poland
autor
  • Wroclaw University of Environmental and Life Sciences, Institute of Environmental Engineering, pl. Grunwaldzki 24a, 50-365 Wrocław, Poland
Bibliografia
  • 1. Nazneen, F., Galvin, P., Arrigan, D., Thompson, M., Benvenuto, P. & Herzog, G. (2012). Electropolishing of medical-grade stainless steel in preparation for surface nano-texturing. J. Solid State Electroch. 16(4), 1389–1397. DOI: 10.1007/s10008-011-1539-9.
  • 2. Lai, J.J. & Lee, S.J. (2003). The effects of electropolishing (EP) process parameters on corrosion resistance of 316L stainless steel. J. Mater. Process. Technol. 140, 206–210. DOI: 10.1016/S0924-0136(03)00785-4.
  • 3. Jullien, C., Benezech, T., Carpentier, B., Lebret, V. & Faille, C. (2003). Identification of surface characteristics relevant to the hygienic status of stainless steel for the food industry. J. Food. Eng. 56, 77–87. DOI: 10.1016/S0260-8774(02)00150-4.
  • 4. Baron, A., Simka, W., Nawrat, G. & Szewieczek, D. (2008). J. Achiev. Mat. Manuf. Eng. 31, 197–202. Electropolishing and chemical passivation of austenitic steel. Retrieved December 10, 2015, from Journal AMME database on the World Wide Web: http://www.journalamme.org
  • 5. Hryniewicz, T., Rokicki, R. & Rokosz, K. (2008). Surface characterization of AISI 316L biomaterials obtained by electropolishing in a magnetic field. Surf. Coat. Tech. 202, 1668–1673. DOI: 10.1016/j.surfcoat.2007.07.067.
  • 6. Lochyński, P., Łyczkowska, E., Pawełczyk, A. & Szczygieł, B. (2012). Effect of bath exploitation on steel electropolishing process efficiency. Przem. Chem., 91, 846–848.
  • 7. Kao, P.S. & Hocheng, H. (2003). Optimization of electro-chemical polishing of stainless steel by grey relational analysis J. Mater. Process. Technol. 140, 255–259. DOI: 10.1016/S0924-0136(03)00747-7.
  • 8. Bhuyan, A., Gregory, B., Lei, H., Yuen Yee, S. & Gianchandani, Y.B. (2005). Pulse and DC electropolishing of stainless steel for stents and other devices. In Proceedings of IEEE Sensors. 4th IEEE Conference on Sensors, 31 October – 3 November 2005 (pp. 314–317). Irvine, CA, USA. Publisher IEEE. DOI: 10.1109/ICSENS.2005.1597699 Sensors IEEE, 314–317.
  • 9. Hocheng, H., Kao, P.S. & Chen, Y.F. (2001). Electropolishing of 316L stainless steel for anticorrosion passivation. J. Mater. Eng. Perform. 10(4), 414–418. DOI: 10.1361/105994901770344827.
  • 10. Shieh, J.M., Liu, S.H. & Dai, B.T. (2006). U.S. Patent No. 20060070888.
  • 11. Baldin, A.V., Matvienko, A.F., Krivoshchapova, E.M., Arbuzov, V.L. & Klotsman, S.M. (1985). U.S.S.R. Patent No. 1171570.
  • 12. Andreshak, J.C., Datta, M., Romankiw, L.T., Vega, L.F. (1991). U.S. Patent No. 5066370.
  • 13. Lin, C.C., Hu, C.C. & Lee, T.C. (2009). Electropolishing of 304 stainless steel: Interactive effects of glycerol content, bath temperature, and current density on surface roughness and morphology. Surf. Coat. Technol. 204, 448–454. DOI: 10.1016/j.surfcoat.2009.08.005.
  • 14. Taguchi, C. (2007). Japan Patent No. 2007332416 (A).
  • 15. Taguchi, C. (2007). Japan Patent No. 2007231413 (A).
  • 16. Lochyński, P., Łyczkowska, E., Szczygiel, B. & Kuczewski, K. (2014). Pitting corrosion of pickled and electropolished Cr-Ni stainless steel. Przem. Chem. 93(5), 762–765. DOI: 10.12916/przemchem.2014.762.
  • 17. Mohan, S., Jayashree, G. & Vasudevan, T. (2000). Electropolishing of stainless steel. Bull. Electrochem. 16(9), 388–391.
  • 18. Lin, C.C. & Hu, C.C. (2008). Electropolishing of 304 stainless steel: Surface roughness control using experimental design strategies and a summarized electropolishing model. Electro-chim. Acta 53, 3356–3363. DOI: 10.1016/j.electacta.2007.11.075.
  • 19. Habibzadeh, S., Li, L., Shum-Tim, D., Davis, E.C. & Omanovic, S. (2014). Electrochemical polishing as a 316L stainless steel surface treatment method: Towards the improvement of biocompatibility. Corrosion Sci. 87, 89–100. DOI: 10.1016/j.corsci.2014.06.010.
  • 20. European Commission. (2006). Integrated Pollution Prevention and Control, Reference Document on Best Available Techniques for the Surface Treatment of Metals and Plastics, 1–546.
  • 21. Iwan, A., Boharewicz, B., Tazbir, I., Sikora, A., Maliński, M., Chrobak, Ł. & Madej, W. (2015). Laser Beam Induced Current Technique of Polymer Solar Cells Based on New Poly(Azomethine) or Poly(3-Hexylthiophene). Chem. Sci. Rev. Lett. 4(14), 597–607. Database on the World Wide Web: http://www.chesci.com/articles/csrl/v4i14/20_CS12204605.pdf
  • 22. Kamble, S.S., Sikora, A., Pawar, S.T., Kambale, R.C., Maldar, N.N. & Deshmukh, L.P. (2015). Morphology reliance of cobalt sulfide thin films: A chemo-thermo-mechanical perception. J. Alloy. Compd. 623, 303–314. DOI: 10.1016/j.jallcom.2015.01.097.
  • 23. Lochynski, P., Sikora, A. & Szczygiel, B. (2016): Surface morphology and passive film composition after pickling and electropolishing, Surface Engineering, DOI: 10.1080/02670844.2016.1238189.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4c37fea3-0f90-484f-b2f2-0135f14095ff
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.