PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Ensemble classification technique for heart disease prediction with meta-heuristic-enabled training system

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Objectives: This research work exclusively aims to develop a novel heart disease prediction framework including three major phases, namely proposed feature extraction, dimensionality reduction, and proposed ensemble-based classification. Methods: As the novelty, the training of NN is carried out by a new enhanced optimization algorithm referred to as Sea Lion with CanberraDistance (S-CDF) via tuning the optimal weights. The improved S-CDF algorithm is the extended version of the existing “Sea Lion Optimization (SLnO)”. Initially, the statistical and higher-order statistical features are extracted including central tendency, degree of dispersion, and qualitative variation, respectively. However, in this scenario, the “curse of dimensionality” seems to be the greatest issue, such that there is a necessity of dimensionality reduction in the extracted features. Hence, the principal component analysis (PCA)- based feature reduction approachis deployed here. Finally, the dimensional concentrated features are fed as the input to the proposed ensemble technique with “Support Vector Machine (SVM), Random Forest (RF), K-Nearest Neighbor (KNN)” with optimized Neural Network (NN) as the final classifier. Results: An elaborative analyses as well as discussion have been provided by concerning the parameters, like evaluation metrics, year of publication, accuracy, implementation tool, and utilized datasets obtained by various techniques. Conclusions: From the experiment outcomes, it is proved that the accuracy of the proposed work with the proposed feature set is 5, 42.85, and 10% superior to the performance with other feature sets like central tendency + dispersion feature, central tendency qualitative variation, and dispersion qualitative variation, respectively. Results: Finally, the comparative evaluation shows that the presented work is appropriate for heart disease prediction as it has high accuracy than the traditional works.
Rocznik
Strony
119--136
Opis fizyczny
Bibliogr. 43 poz., rys., tab.
Twórcy
  • Department of Computer Science and Engineering, Annamalai University, Annamalai Nagar, 608002 Chidambaram, Tamil Nadu, India
  • Department of Information Technology, Faculty of Engineering and Technology, Annamalai University Annamalainagar - 608002, Tamil Nadu, India
  • Gudlavalleru Engineering College Gudlavalleru- 521356, India
Bibliografia
  • 1. Bojja GR, Ofori M, Liu J, Ambati LS. Early public outlook on the coronavirus disease (COVID-19): a social media study; 2020.
  • 2. Mienye ID, Sun Y, Wang Z. Improved sparse autoencoder based artificial neural network approach for prediction of heart disease. Inf Med Unlocked 2020;18:100307.
  • 3. Al-Makhadmeh Z, Tolba A. Utilizing IoT wearable medical device for heart disease prediction using higher order Boltzmann model: a classification approach. Measurement 2019;147: 106815.
  • 4. Rodríguez J, Prieto S, Lópe LJR. A novel heart rate attractor for the prediction of cardiovascular disease. Inf Med Unlocked 2019;15: 100174.
  • 5. Baggen VJM, Venema E, Živná R, Bosch AE, Roos-Hesselink JW. Development and validation of a risk prediction model in patients with adult congenital heart disease. Int J Cardiol 2019;276: 87-92.
  • 6. Ong KL, Chung RWS, Hui N, Festin K, Kristenson M. Usefulness of certain protein biomarkers for prediction of coronary heart disease. Am J Cardiol 2020;125:542-8.
  • 7. Patel J, Rifai MA, Scheuner MT, Shea S, Evoy JWM. Basic vs. more complex definitions of family history in the prediction of coronary heart disease: the multi-ethnic study of atherosclerosis. Mayo Clin Proc 2018;93:1213-23.
  • 8. Rajakumar BR, George A. On hybridizing fuzzy min max neural network and firefly algorithm for automated heart disease diagnosis. In: 2013 fourth international conference on computing, communications and networking technologies(ICCCNT); Tiruchengode, India, IEEE 2013:1-5 pp.
  • 9. Praveena MDA, Bharathi B. Cognitive learning based missing value computation in cardiovascular heart disease prediction data. Procedia Comput Sci 2019;165:742-50.
  • 10. Beunza J-J, Puertas E, García-Ovejero E, Villalba G, Landecho MF. Comparison of machine learning algorithms for clinical event prediction (risk of coronary heart disease). J Biomed Inf 2019;97. 103257.
  • 11. Amin MS, Chiam YK, Varathan KD. Identification of significant features and data mining techniques in predicting heart disease. Telematics Inf 2019;36:82-93.
  • 12. Ahmed H, Younis EMG, Hendawi A, Ali AA. Heart disease identification from patients’ social posts, machine learning solution on Spark. Future Generat Comput Syst 2020;111:714-22.
  • 13. Bonacaro A, Morgan L. Simulated mindfulness meditation: a major breakthrough in the management of chronic pain; 2016.
  • 14. Harel-Sterling L, Wang F, Cohen S, Liu A, Marelli A. Risk predictions in adult congenital heart disease patients with heart failure: a systematic review. J Am Coll Cardiol 2019;73:656.
  • 15. Hamed MB, Farah A, Abdeljalil O, Garmazi S. Metabolic factors of coronary arteries restenosis formation and unfavourable outcomes prediction of stent angioplasty in patients with chronic coronary heart disease. Arch Cardiovasc Dis Suppl 2019;11:188-9.
  • 16. Kinoshita T, Abe A, Yao S, Yano K, Ikeda T. Risk stratification with non-invasive techniques for prediction of cardiac mortality in patients with ischemic heart disease. J Electrocardiol 2019;53: e17-8.
  • 17. Bossolasco M, Fenoglio LM. Yet another PECS usage: a continuous PECS block for anterior shoulder surgery. J Anaesthesiol Clin Pharmacol 2018;34:569.
  • 18. Yang J, Xiao W, Lu H, Barnawi A. Wireless high-frequency NLOS monitoring system for heart disease combined with hospital and home. Future Generat Comput Syst 2019;110:772-80.
  • 19. Samuel OW, Yang B, Geng Y, Asogbon MG, Li G. A new technique for the prediction of heart failure risk driven by hierarchical neighborhood component-based learning and adaptive multilayer networks. Future Generat Comput Syst 2019;110:781-94.
  • 20. Kinoshita T, Abe A, Yao S, Yano K, Ikeda T. Risk stratification with non-invasive techniques for prediction of cardiac mortality in patients with ischemic heart disease. J Electrocardiol 2018;51: 1179.
  • 21. Wang Z, Wang B, Zhou Y, Li D, Yin Y. Weight-based multiple empirical kernel learning with neighbor discriminant constraint for heart failure mortality prediction. J Biomed Inf 2020;101:103340.
  • 22. George A, Rajakumar BR. On hybridizing fuzzy min max neural network and firefly algorithm for automated heart disease diagnosis. In: Fourth international conference on computing, communications and networking technologies. Tiruchengode, India: IEEE; 2013:1-5 pp.
  • 23. Singh G, Jain VK, Singh A. Adaptive network architecture and firefly algorithm for biogas heating model aided by photovoltaic thermal greenhouse system. Energy Environ 2018;29:1073-97.
  • 24. Bojja GR, Ambati LS. A novel framework for crop pests and disease identification using social media and AI. In: Proceedings of the fifteenth midwest association for information systems conference. Des Moines, Iowa; 2020:28-9 pp.
  • 25. Manassero A, Bossolasco M, Ugues S, Bailo C. An atypical case of two instances of mepivacaine toxicity. J Anaesthesiol Clin Pharmacol 2014;30:582.
  • 26. Desogus M. The stochastic dynamics of business evaluations using Markov models. Int J Contemp Math Sci 2020;15:53-60.
  • 27. Thangam T, Kazem HA, Muthuvel K. SFOA: Sun Flower Optimization Algorithm to Solve Optimal Power Flow J Comput Mech Power Syst Control 2019;2. Resbee Publishers.
  • 28. Latha CBC, Jeeva SC. Improving the accuracy of prediction of heart disease risk based on ensemble classification techniques. Inf Med Unlocked 2019;16:100203.
  • 29. Mathan K, Kumar PM, Panchatcharam P, Manogaran G, Varadharajan R. A novel Gini index decision tree data mining method with neural network classifiers for prediction of heart disease. Des Autom Embed Syst 2018;22:225-42.
  • 30. Vijayashree J, Sultana HP. Heart disease classification using hybridized Ruzzo-Tompa memetic based deep trained Neocognitron neural network. Health Technol 2018;10:207-16.
  • 31. Ali L, Rahman A, Khan A, Zhou M, Javeed A, Khan JA. An automated diagnostic system for heart disease prediction based on ${\chi^{2}}$ statistical model and optimally configured deep neural network. IEEE Access 2019;7:34938-45.
  • 32. Javeed A, Zhou S, Yongjian L, Qasim I, Noor A, Nour R. An intelligent learning system based on random search algorithm and optimized random forest model for improved heart disease detection. IEEE Access 2019;7:180235-43.
  • 33. Ali L, Niamat A, Khan JA, Golilarz NA, Xingzhong X, Noor A, et al. An optimized stacked support vector machines based expert system for the effective prediction of heart failure. IEEE Access 2019;7:54007-14.
  • 34. Maragatham G, Devi S. LSTM model for prediction of heart failure in big data. J Med Syst 2019;43:111.
  • 35. Nourmohammadi-Khiarak J, Feizi-Derakhshi M-R, Behrouzi K, Mazaheri S, Zamani-Harghalani Y, Tayebi RM. New hybrid method for heart disease diagnosis utilizing optimization algorithm in feature selection. Health Technol 2019;10:1-12.
  • 36. Avci E. A new intelligent diagnosis system for the heart valve diseases by using genetic-SVM classifier. Expert Syst Appl 2009; 36:10618-26.
  • 37. Masetic Z, Subasi A. Congestive heart failure detection using random forest classifier. Comput Methods Progr Biomed 2016; 130:54-64.
  • 38. Jabbar MA, Deekshatulu BL, Chandra P. Classification of heart disease using K- nearest neighbor and genetic algorithm. Procedia Technol 2013;10:85-94.
  • 39. Central tendency. Available from: https://en.wikipedia.org/wiki/Central_tendency [Accessed 11 May 2020].
  • 40. Statistical dispersion. Available from: https://en.wikipedia.org/wiki/Statistical_dispersion [Accessed 11 May 2020].
  • 41. Qualitative variatoin. Available from: https://en.wikipedia.org/wiki/Qualitative_variation [Accessed 11 May 2020].
  • 42. Gárate-Escamila AK, Hassani AHE, Andres E. Classi ` fication models for heart disease prediction using feature selection and PCA. Inf Med Unlocked 2020;19:100330.
  • 43. Masadeh R, Mahafzah BA, Sharieh A. Sea Lion optimization algorithm. Int J Adv Comput Sci Appl 2019;10:388-95.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4c359c92-0771-4c9e-b942-17ab005407d1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.