PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An evaluation of the range-gated-imaging technology under dense aerosol environments

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Range-gated-imaging system, which can be used to eliminate backscatter in strong scattering environments, is based on two high speed technologies. It uses high power, ultra-short pulse laser as the light source. And it opens the optical gate of an ICCD camera with a micro-channel-plate image intensifier in a very short time while the laser pulses reflected by the object is coming back to the ICCD camera. Using this range-gated-imaging technology, the effect of scattered light can be reduced and a clear image is obtained. In this paper, the test results of the range-gated-imaging system under dense aerosol environments, which simulates environments in the reactor containment building when the severe accident of the nuclear power plant occurred, are described. To evaluate the observation performance of the range-gated-imaging system under such dense fog environment, we made a test facility. Fog particles are sprayed into the test facility until fog concentration is reached to the postulated concentration level of the severe accident of the nuclear power plant. At such dense fog concentration conditions, we compared and evaluated the observation performances of the range-gated-imaging system and the CCD camera.
Twórcy
autor
  • Nuclear Robot and Diagnosis Team, Korea Atomic Energy Research Institute, 111, Daedeok-daero 989 beon-gil, Yuseong-Gu, Daejeon, 305-353, Republic of Korea
autor
  • Nuclear Robot and Diagnosis Team, Korea Atomic Energy Research Institute, 111, Daedeok-daero 989 beon-gil, Yuseong-Gu, Daejeon, 305-353, Republic of Korea
autor
  • Nuclear Robot and Diagnosis Team, Korea Atomic Energy Research Institute, 111, Daedeok-daero 989 beon-gil, Yuseong-Gu, Daejeon, 305-353, Republic of Korea
Bibliografia
  • [1] A.L. Wright, J.H. Wilson, P.C. Arwood, Pretest aerosol code comparisons for LWR aerosol containment tests LA1 and LA2, 2nd Int. Aerosol Conf (1986).
  • [2] D.A. Powers, J.L. Sprung, A Simplified Model for Aerosol Scrubbing by a Water Pool Overlying Core Debris Interacting With Concrete, Sandia National Lab., Albuquerque, NM, USA, 1993, NUREG/CR-5901, Nov.
  • [3] H.J. Allelein, et al., State-of-the-art Report on Nuclear Aerosols, NEA/CSNI/R(2009)5, 2009.
  • [4] S. Nomoto, Variations of visibility (Japanese), Denki 23 (1976) 234–257.
  • [5] Visibility and air pollution, Air Pollution Handbook, McGraw-Hill, 1956, Chap. 6.
  • [6] TEPCO, Tokyo, Japan, Apr. 30Investigation Results at the Pedestal Grating Upper Area in the Unit 1 Reactor of the Fukushima Daiichi Nuclear Power Station (Japanese), Presented at the TEPCO Meeting2015, Investigation Results at the Pedestal Grating Upper Area in the Unit 1 Reactor of the Fukushima Daiichi Nuclear Power Station (Japanese), Presented at the TEPCO Meeting (2015).
  • [7] TEPCO, Tokyo, Japan, Oct. 20Investigation Results Inside the PCV (Primary Containment Vessel) in the Unit 3 Reactor of the Fukushima Daiichi Nuclear Power Station (Japanese), Presented at the TEPCO Meeting2015, Investigation Results Inside the PCV (Primary Containment Vessel) in the Unit 3 Reactor of the Fukushima Daiichi Nuclear Power Station (Japanese), Presented at the TEPCO Meeting (2015).
  • [8] TEPCO, Tokyo, Japan, Jan. 26Investigation Results Inside the PCV (Primary Containment Vessel) in the Unit 2 Reactor of the Fukushima Daiichi Nuclear Power Station (Japanese), Presented at the TEPCO Meeting2017, Investigation Results Inside the PCV (Primary Containment Vessel) in the Unit 2 Reactor of the Fukushima Daiichi Nuclear Power Station (Japanese), Presented at theTEPCO Meeting (2017).
  • [9] E. Sato, J. Akizono, H. Takahashi, Design and Manufacture of a Test Apparatus of Underwater Laser Viewing System (Japanese), Technical Note, The port and harbour research institute, Ministry of Transport, Japan, 1996, March.
  • [10] K. Ochiai, K. Nishimura, T. Yamada, T. Baba, Development of the laser radar surveillance system technology at long-distances with high-resolution under inclement weather (Japanese), MHI Tech. Rev. 42 (2005) 212–215.
  • [11] S. Donati, A. Sona, Evaluation of visibility improvements in fog by the range gating technique, Opto-Electron. 1 (1969) 89–101.
  • [12] E. Belin, Display of an analytical model for backscattered luminance and a full-field range gated imaging system for vision in fog, Proc. SPIE 7088 (2008) 70880O–1.
  • [13] Y. Grauer, Active gated imaging in driver assistance system, Adv. Opt. Technol. 3 (2014) 151–160.
  • [14] Diode Pumped Solid State Power Chip NanoLasers User’s Manual, Teem Photonics Inc.
  • [15] Operating Manual for intensified CCD (ICCD) digital video camera system (4 Picos-DIG), Stanford Computer Optics Inc., [Online] Available: http://www.stanfordcomputeroptics.com/.
  • [16] M.J. Pilat, D.E. Ensor, Comparison between the light extinction aerosol mass concentration relationship of atmospheric and air pollutant emission aerosols, Atmos. Environ. Pergamon Press 5 (1971) 209–215.
  • [17] Climate Information Data, Korea Meteorlogical Admintration, [Online] Available: http://www.kma.or.kr/.
Uwagi
1. This work was supported by the National Research Foundation of Korea (NRF) grant funded by the korean goverment (MSIP) (NRF-2012M2A8A1029350).
2. Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4c348c86-b7db-4fd9-967a-d14196338c9a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.