PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Air Purification in Sustainable Buildings

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Oczyszczanie powietrza wewnętrznego w budynkach zrównoważonych
Języki publikacji
EN
Abstrakty
EN
This paper concerns the issue of indoor air purification techniques in sustainable public buildings and the residential sector. One of the requirements of sustainable construction is to reduce the energy costs, minimize waste, improve the well-being of users and create green space. The most important certification systems for green (ecological) buildings such as LEED or BREEAM also include the assessment of the indoor environment in terms of the air quality, noise level, building acoustics and energy consumption. Traditional air treatment and purification systems require the use of numerous devices, air transport systems, which are energy-consuming. It is necessary to clean or replace the working elements periodically. The alternative is biophilic installations (green walls) based on the natural properties of plants for removing gaseous pollutants, particulate matter and even bioaerosols from the air. Plants improve humidity, regulate the carbon dioxide concentration, ionize the air and suppress noise. However, the processes of photocatalytic degradation of gaseous compounds are a very promising method of removing impurities, due to low costs, mild process conditions (temperature and pressure) and the possibility of complete mineralization of impurities.
PL
Praca dotyczy zagadnienia technik oczyszczania powietrza wewnętrznego w zrównoważonych budynkach użyteczności publicznej i sektorze mieszkalnym. Jednym z wymogów budownictwa zrównoważonego jest ograniczenie kosztów zużycia energii, minimalizacja powstawania odpadów, poprawa samopoczucia użytkowników oraz tworzenie zielonej przestrzeni. Najważniejsze systemy certyfikacji zielonych/ ekologicznych budynków takie jak LEED czy BREEAM obejmują również ocenę środowiska wewnętrznego w zakresie jakości powietrza, poziomu hałasu, akustyki budynku i jego energochłonności. Tradycyjne systemy uzdatniania i oczyszczania powietrza wymagają wykorzystania licznych urządzeń, systemów przesyłu powietrza świeżego i zużytego, które są energochłonne. Konieczne jest ich okresowe czyszczenie lub wymiana elementów roboczych. Alternatywą są instalacje biofiliczne (zielone ściany) oparte na naturalnych właściwościach roślin do usuwania z powietrza zanieczyszczeń gazowych, pyłów a nawet bioaerozoli. Rośliny poprawiają wilgotność, regulują stężenie dwutlenku węgla, jonizują powietrze i tłumią hałas. Natomiast procesy fotokatalitycznej degradacji związków gazowych są bardzo obiecującą metodą usuwania zanieczyszczeń, ze względu na niewielkie koszty, łagodne warunki prowadzenia procesów (temperatura i ciśnienie) i możliwość całkowitej mineralizacji zanieczyszczeń.
Czasopismo
Rocznik
Strony
245--252
Opis fizyczny
Bibliogr. 43 poz., tab.
Twórcy
  • Department of Indoor and Outdoor Air Quality, Lublin University of Technology, ul. Nadbystrzycka 40B, Lublin, Poland
Bibliografia
  • 1. ABBASS O.A., SAILOR D.J., GALL E.T., 2017, Effectiveness of indoor plants for passive removal of indoor ozone, in Building and Environment, 119, p. 62- 70.
  • 2. BAUER M., MŐSLE P., SWARZ M., 2010, Green Building. Guidebook for sustainable architecture, Springer.
  • 3. BINAS V., VENIERI D., KOTZIAS D., KIRIAKIDIS G., 2017, Modified TiO2 based photocatalysts for improved air and health, in: Journal of Materiomics, 3, p. 3-16.
  • 4. BIELNIAK S., GŁUSZAK M., ZIĘBA M., 2013, Budownictwo ekologiczne. Aspekty ekonomiczne, PWN, Warsaw.
  • 5. DARLINGTON A., CHAN M., MALLOCH D., PILGER C., DIXON M.A., 2010, The biofiltration of indoor air: implications for air quality, 2010, in: Indoor Air, 10, p. 39-46.
  • 6. DELA CRUZ M., CHRISTENSEN J.H., THOMSEN J.D, MULLER R., 2014, Can ornament potted plants remove volatile organic compounds from indoor air? in: Environmental Science and Pollution Research, 21, p. 13909-13928.
  • 7. DUDZIŃSKA M., STASZOWSKA A., POŁEDNIK B., , Preliminary study of effect of furniture and finishing materials on formaldehyde concentration in office rooms, in: Environmental Protection Engineering, 35, p. 225-233.
  • 8. FIRLĄG S., 2018, Zrównoważone budynki biurowe, PWN, Warsaw.
  • 9. FENG H., HEWAGE K., 2014, Lifecycle assessment of living walls: air purification and energy performance, in: Journal of Cleaner Production, 69, p. 91- 99.
  • 10. GALENDA A., VISENTIN F., GERBASI R., FANERO M., BERNARDI A., EL HEBRA N., 2018, Evaluation of self-cleaning photocatalytic paints: are they effective under actual indoor lighting systems? in: Applied Catalysis B: Environmental, 232, p. 194- 204.
  • 11. GAWROŃSKA H., BAKERA B., 2015, Phytoremediation of particulate matter from indoor air by Chlorophytum comosum L. plants, in: Air Quality, Atmosphere & Health, 8, p.265-272.
  • 12. GUBB C., BLANUSA T., GRIFFITHS A., PFRANG C., 2018, Can houseplants improve indoor air quality by removing CO2 and increasing relative humidity? in: Air Quality, Atmosphere & Health, 11, p. 1191- 1201.
  • 13. GUNAWARDENA K., STEEMERS K., 2019, Living walls in indoor environments, in: Building and Environment, 148, p. 478-487.
  • 14. HAN K., ZHANG J.S., GUO B., 2014, A novel approach of integrating ventilation and air cleaning for sustainable and healthy office environments, in: Energy and Buildings, 76, p. 32-42.
  • 15. HORR Y., ARIF M., KAUSHIK A., MAZROESI A., KATAFYGIOTOU M., ELSARRAG E., 2016, Occupant productivity and office indoor environment quality: a review of the literature, in: Building and Environment, 105, p. 369-389.
  • 16. HUSEIEN G.F., SHAH K.W., SAM A.R.M., 2019, Sustainability of nanomaterials based self-healing concrete: an all-inclusive insight, in: Journal of Building Engineering, 23, p. 155-171.
  • 17. IRGA P.J., PETTIT T.J., TORPY F.R., 2018, The phytoremediation in indoor air pollution: a review on the technology development from the potted plant through to functional green wall biofilters, in: Reviews of Environmental Science Biotechnology, 17, p. 395-415.
  • 18. KELLY F.J., FUSSEL J., 2019, Improving indoor air quality, health and performance within environments where people live, travel, learn and work, in: Atmospheric Environment, 200, p. 90-109.
  • 19. KIM K.J., KHALEKUZZAMAN M., SUH J.N., KIM H.J., SHAGOL S., KIM H.H., 2018, Phytoremediation of volatile organic compounds by indoor plants, in: Horticulture, Environment, and Biotechnology, 59, p. 143-157.
  • 20. KOTZIAS D., PILIDIS G., 2017, Building design and indoor air quality – experience and prospects, in: Fresenius Environmental Bulletin, 26(1), p. 323- 326.
  • 21. LIU G., XIAO M., ZHANG X., et al., 2017, A review of air filtration technologies for sustainable and healthy building ventilation, in: Sustainable Cities and Society, 32, p. 375-396.
  • 22. LORENCIK S., YU Q.L., BROUWERS H.J.H, 2016, Photocatalytic coating for indoor air purification: synergetic effect of photocatalyst dosage and silica modification, in: Chemical Engineering Journal, 306, p. 942-952.
  • 23. LÓPEZ C.D., CARPIO M., MARTÍN-MORALES M., ZAMORANO M., 2019, A comparative analysis of sustainable building assessment methods, in: Sustainable Cities and Society, 49, p.101611.
  • 24. LUENGAS A., BARONA A., HORT C., 2015, A review of indoor air treatment technologies, in: Reviews in Environmental Science and Biotechnology, 14, p. 499-522.
  • 25. MASSEY D.D., HABIL M., TANEJA A., 2016, Particles in different indoor microenvironments - its implications on occupants, in: Building and Environment, 106, p. 237-244.
  • 26. MARCHWIŃSKI J., ZIELONKA-JUNG K., 2014, Współczesna architektura proekologiczna, PWN, Warsaw.
  • 27. MIDOUHAS E., KOKOSI T., FLOURI E., 2018, Outdoor and indoor air quality and cognitive ablility in young children, in: Environmental Research, 161, p. 321-328.
  • 28. MORAWSKA L., AYOKO G.A., BAE G.N. et al., 2017, Airborne particles in indoor environment of homes, schools, offices and aged care facilities: the main routes of exposure, in: Environmental International, 108, p. 75-83.
  • 29. MOYA T.A., VAN DEN DOBBELSTEEN A., OTTELÉ M., BLUYSSEN P.M., 2019, A review of green systems within the indoor environment, in: Indoor and Built Environment, 28(3), p. 298- 309.
  • 30. NATH R.K., ZAIN M.F., JAMIL M., 2016, An environment-friendly solution for indoor air purification by using renewable photocatalysts in concrete: a review, in: Renewable and Sustainable Energy Reviews, 62, p. 1184-1194.
  • 31. PAWŁOWSKI A., 2011, Sustainable Development as a Civilizational Revolution, A Multidisciplinary Approach to the Challenges of the 21st Century, Taylor & Francis Group, CRC Press, Balkema, Boca Raton, London, New York, Leiden.
  • 32. PETTIT T., IRGA P.J., ABDO P., TORPY F.R., 2015, Do the plants in functional green walls contribute to their ability to filter particulate matter? in: Building and Environment, 125, p. 299-307.
  • 33. PETTIT T., IRGA P.J., TORPY F.R., Towards practical indoor air phytoremediation: a review, Chemosphere, 2018, 208, 960-974.
  • 34. RAJI B., TENPIERIK M.J., VAN DEN DOBBELSTEEN A., 2015, The impact of greening systems on building energy performance: A literature review, in: Renewable and Sustainable Energy Reviews, 45, p. 610-623.
  • 35. REN H., KOSHY P., CHEN W.F., SORRELL C.C., 2017, Photocatalytic materials and technologies for air purification, in: Journal of Hazardous Materials, 325, p. 340-366.
  • 36. SOREANU G., DIXON M., DARLINGTON A., 2013, Botanical biofiltration of indoor gaseous pollutants – a mini review, in: Chemical Engineering Journal, 229, p. 585-594.
  • 37. STEINEMANN A., WARGOCKI P., RISMANCHI B., 112, Ten questions concerning green buildings and indoor air quality, in: Building and Environment, 112, p. 351-358.
  • 38. THAM K.W., 2016, Indoor air quality and its effects on humans – a review of challenges and developments in the last 30 years, in: Energy and Buildings, 130, p. 637-650.
  • 39. TUDIWER D., KORJENIC A., 2017, The effect of an indoor living wall system on humidity, mould spores and CO2 concentration, in: Energy and Buildings, p. 146, 73-86.
  • 40. UN, 2015, Sustainable Development Goals, https:// www.un.org/sustainabledevelopment (1.06. 2017).
  • 41. WHO Regional Office for Europe, 2009, Guidelines for indoor air quality, Dampness and moulds, Druckpartner Moser.
  • 42. WHO Regional Office for Europe, 2010, Guidelines for indoor air quality, Selected pollutants, in puncto druck+medien.
  • 43. ZHONG L., HAGHIGHAT F., 2015., Photocatalytic air cleaners and materials technologies – abilities and limitations, in: Building and Environment, 91, p. 191- 203.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4c30c3a4-8967-4d79-8a47-98357238ce9c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.