PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

KinematiC PPP using mixed GPS/GLONASS single-frequency observations

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Nowadays, Precise Point Positioning (PPP) is a very popular technique for Global Navigation Satellite System (GNSS) positioning. The advantage of PPP is its low cost as well as no distance limitation when compared with the differential technique. Singlefrequency receivers have the advantage of cost effectiveness when compared with the expensive dual-frequency receivers, but the ionosphere error makes a difficulty to be completely mitigated. This research aims to assess the effect of using observations from both GPS and GLONASS constellations in comparison with GPS only for kinematic purposes using single-frequency observations. Six days of the year 2018 with single-frequency data for the Ethiopian IGS station named “ADIS” were processed epoch by epoch for 24 hours once with GPS-only observations and another with GPS/GLONASS observations. In addition to “ADIS” station, a kinematic track in the New Aswan City, Aswan, Egypt, has been observed using Leica GS15, geodetic type, dual-frequency, GPS/GLONASS GNSS receiver and singlefrequency data have been processed. Net_Diff software was used for processing all the data. The results have been compared with a reference solution. Adding GLONASS satellites significantly improved the satellite number and Position Dilution Of Precision (PDOP) value and accordingly improved the accuracy of positioning. In the case of “ADIS” data, the 3D Root Mean Square Error (RMSE) ranged between 0.273 and 0.816 m for GPS only and improved to a range from 0.256 to 0.550 m for GPS/GLONASS for the 6 processed days. An average improvement ratio of 24%, 29%, 30%, and 29% in the east, north, height, and 3D position components, respectively, was achieved. For the kinematic trajectory, the 3D position RMSE improved from 0.733 m for GPS only to 0.638 m for GPS/GLONASS. The improvement ratios were 7%, 5%, 28%, and 13% in the east, north, height, and 3D position components, respectively, for the kinematic trajectory data. This opens the way to add observations from the other two constellations (Galileo and BeiDou) for more accuracy in future research.
Słowa kluczowe
Rocznik
Strony
97--112
Opis fizyczny
Bibliogr. 17 poz., rys., tab.
Twórcy
  • Faculty of Engineering, Aswan University, Egypt
  • Faculty of Engineering, Aswan University, Egypt
autor
  • Faculty of Engineering, Aswan University, Egypt
Bibliografia
  • Cai, C. and Y. Gao (2007). "Precise point positioning using combined GPS and GLONASS observations." Positioning 1(11): 0.
  • Cai, C., Z. Liu and X. Luo (2013). "Single-frequency ionosphere-free precise point positioning using combined GPS and GLONASS observations." The Journal of Navigation 66(3): 417-434.
  • Choy, S. (2009). Investigation into the accuracy of single frequency precise point positioning (PPP). School of Mathematical and Geospatial Sciences. Melboune, Australia, RMIT University.
  • CODE (2019). "Center for Orbit Determination in Europe (CODE)". Retrieved 1 March, 2019, from http://ftp.aiub.unibe.ch/CODE/
  • CSRS-PPP (2019). "Natural Resources Canada, Precise Point Positioning." Retrieved 1 March, 2019, from https://webapp.geod.nrcan.gc.ca/geod/tools-outils/ppp.php?locale=en
  • El Manaily, E., M. A. Rabbou, A. El-Shazly and M. Baraka (2017). "Evaluation of QuadConstellation GNSS Precise Point Positioning in Egypt." Artificial Satellites 52(1): 9-18.
  • Farah, A. (2018). "Kinematic-PPP using Single/Dual Frequency Observations from (GPS, GLONASS and GPS/GLONASS) Constellations for Hydrography." Artificial Satellites 53(1): 37-46.
  • Gao, Y. and K. Chen (2004). "Performance analysis of precise point positioning using reatime orbit and clock products." Journal of Global Positioning Systems 3(1,2): 95-100.
  • GitHub (2019). "github." Retrieved July, 2019, from https://github.com/YizeZhang/Net_Diff.
  • IGS (2019). "International GNSS Service (IGS)." Retrieved 1 March, 2019, from http://www.igs.org/
  • "Leica Geo Office - one integrated Office Software." Retrieved July, 2019, from https://leicageosystems.com/products/total-stations/software/leica-geo-office.
  • Leica GS10/GS15 User Manual (2012), Version 4.1 English.
  • Li, X., X. Zhang and M. Ge (2011). "Regional reference network augmented precise point positioning for instantaneous ambiguity resolution." Journal of Geodesy 85(3): 151-158.
  • Pan, L., C. Cai, R. Santerre and X. Zhang (2017). "Performance evaluation of singlefrequency point positioning with GPS, GLONASS, BeiDou and Galileo." Survey Review 49(354): 197-205.
  • Rizos, C., V. Janssen, C. Roberts and T. Grinter (2012). Precise point positioning: is the era of differential GNSS positioning drawing to an end? FIG working week. Rome, Italy.
  • Topcon Hiper GD and Hiper GGD operator's manual (2004), Revision B.
  • Yize, Z. (2018). "Research on Real-time High Precision BeiDou Positioning Service System." Acta Geodaetica et Cartographica Sinica 47(9): 1293-1293.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4c28f85b-cbee-4f50-acac-1a6119deb1ee
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.