PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Plasmonic wave at uniaxial chiral-metal-uniaxial chiral interface

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This work examines the propagation of light plasmon coupling at uniaxial chiral-metal-uniaxial chiral planar interface. Gold (Au) is sandwiched between uniaxial chiral (UAC) layers. We have derived the characteristics equation by employing boundary conditions at x = d on UAC-metal and x = –d on metal-UAC interfaces. Three cases of UAC medium are discussed under the different values of chirality and core width in the visible frequency region. Based on the numerical results, it is concluded that case I (εt = – 0.025ε0, εz = 0.2ε0) has the highest effective mode index (EMI), whereas case II (εt = 0.25ε0, εz = – 0.2ε0) has the lowest EMI. As an additional benefit, it has also been shown that a specified frequency band can be tuned by altering the chirality and core width of the proposed planar structure. Moreover, case III (εt = – 0.25ε0, εz = – 0.5ε0) exhibits the highest cut-off frequency and case I exhibits the lowest value. The present work may have potential ap- plications in optical sensors, plasmonic platforms, detectors and surface waveguides.
Słowa kluczowe
Czasopismo
Rocznik
Strony
169--179
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
autor
  • Department of Physics, University of Agriculture, Faisalabad, Pakistan
autor
  • Department of Physics, University of Agriculture, Faisalabad, Pakistan
  • Department of Electrical Engineering, King Saud University, Riyadh, Saudi Arabia
autor
  • Department of Electrical Engineering, King Saud University, Riyadh, Saudi Arabia
autor
  • School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
Bibliografia
  • [1] Gric T., Surface-plasmon-polaritons at the interface of nanostructured metamaterials, Progress In Electromagnetics Research M 46, 2016: 165-172. https://doi.org/10.2528/PIERM15121605
  • [2] Gric T., Hess O., Tunable surface waves at the interface separating different graphene-dielectric composite hyperbolic metamaterials, Optics Express 25(10), 2017: 11466-11476. https://doi.org/ 10.1364/OE.25.011466
  • [3] Sana T., Alkanhal M.A.S., Ali A., Ullah H., Ghaffar A., Khan Y., Yaqoob M.Z., Thermally tunable phonon–plasmon polariton modes at hexagonal boron nitride (hBN) and indium antimo-nide (InSb) interfaces, Journal of Optics 26(11), 2024: 115006. https://doi.org/10.1088/2040-8986/ ad8459
  • [4] Yaqoob M.Z., Ghaffar A., Alkanhal M.A.S., Aladadi Y.T., Analysis of hybrid surface wave propagation supported by chiral metamaterial–graphene–metamaterial structures, Results in Phys¬ics 14, 2019: 102378. https://doi.org/10.1016/j.rinp.2019.102378
  • [5] Bousbih R., Soliman M.S., Jafar N.N.A., Jabir M.S., Majdi H., Alshomrany A.S., Hadia N.M.A., Shaban M., El-Badry Y.A., Iftikhar M., Generation of surface plasmon polaritons (SPPs) at chiro- plasma-metal interface, Plasmonics 20, 2025: 863-868. https://doi.org/10.1007/s11468-024-02328-y
  • [6] Kwon M.-S., Metal-insulator-silicon-insulator-metal waveguides compatible with standard CMOS technology, Optics Express 19(9), 2011: 8379-8393. https://doi.org/10.1364/OE.19.008379
  • [7] Mi G., Van V., Characteristics of surface plasmon polaritons at a chiral–metal interface, Optics Letters 39(7), 2014: 2028-2031. https://doi.org/10.1364/OL.39.002028
  • [8] Saeed M., Ghaffar A., Alkanhal M.A.S., Khan Y., Characteristics of hybrid surface plasmon polaritons at a chiral graphene metal interface in cylindrical waveguides, Optical and Quantum Electronics 53, 2021: 560. https://doi.org/10.1007/s11082-021-03219-w
  • [9] Zhang Q., Li J., Liu X., Gelmecha D.J., Dispersion, propagation, and transverse spin of surface plasmon polaritons in a metal-chiral-metal waveguide, Applied Physics Letters 110(16), 2017: 161114. https://doi.org/10.1063/1.4982158
  • [10] Zheng Y., Chen J., Ji Z., Lin H., Li Z.-Y., Analytical solutions for electromagnetic surface states at the interface between metal and gyromagnetic media, Journal of the Optical Society of America B 40(11), 2023: 2815-2828. https://doi.org/10.1364/JOSAB.499881
  • [11] Palik E.D., Handbook of Optical Constants of Solids, Vol. 3., Academic Press, 1998.
  • [12] Novotny L., Hecht B., Principles of Nano-Optics, Cambridge University Press, 2012.
  • [13] Zhang Q., Li J., Characteristics of surface plasmon polaritons in a dielectrically chiral-metal -chiral waveguiding structure, Optics Letters 41(14), 2016: 3241-3244. https://doi.org/10.1364/ OL.41.003241
  • [14] Baqir M.A., Choudhury P.K., Propagation through uniaxial anisotropic chiral waveguide under DB-boundary conditions, Journal of Electromagnetic Waves and Applications 27(6), 2013: 783-793. https://doi.org/10.1080/09205071.2013.786209
  • [15] Dong J.-F., Li J., Guided modes in the circular waveguide filled with uniaxial chiral medium, International Journal of Applied Electromagnetics and Mechanics 40(4), 2012: 283-292. https://doi.org/ 10.3233/JAE-2012-1591
  • [16] Ghaffar A., Alkanhal M.A.S., Electromagnetic reflection and transmission from a planar iso-tropic chiral-uniaxial chiral interface with optical axis normal to interface, International Journal of Applied Electromagnetics and Mechanics 47(3), 2015: 805-817. https://doi.org/10.3233/JAE-130161
  • [17] Naheed M., Faryad M., Excitation of surface plasmon–polariton waves in the prism-coupled configurations guided by reciprocal, uniaxially chiral, bianisotropic material, Optics Communications 465, 2020: 125611. https://doi.org/10.1016/j.optcom.2020.125611
  • [18] Ghaffar A., Alkanhal M.A.S., Electromagnetic waves in parallel plate uniaxial anisotropic chiral waveguides, Optical Materials Express 4(9), 2014: 1756-1761. https://doi.org/10.1364/ OME.4.001756
  • [19] Umair M., Ghaffar A., Alkanhal M.A.S., Khan Y., Alqahtani A.H., Shakir I., Plasmonic modes of metallic slab in anisotropic plasma environment, Plasmonics 18, 2023: 1857-1864. https://doi.org/ 10.1007/s11468-023-01903-z
  • [20] Umair M., Ghaffar A., Alkanhal Majeed A.S., Khan Y., Shahid M.U., Dyakonov waves generation at uniaxial chiral-plasma interface, Optics Express 32(3), 2024: 4376-4386. https://doi.org/ 10.1364/OE.510362
  • [21] Umair M., Ghaffar A., Razzaz F., Saeed S.M., Hybrid plasmon modes at chiroferrite-graphene interface, Plasmonics 19, 2024: 2193-2199. https://doi.org/10.1007/s11468-023-02148-6
  • [22] Xu J.-P., Propagation characteristics of a circular waveguide filled with a chiroferrite medium, International Journal of Infrared and Millimeter Waves 17, 1996: 193-203. https://doi.org/10.1007/ BF02088193
  • [23] Umair M., Ghaffar A., Alkanhal M.A.S., Khan Y., Alqahtani A.H., Light plasmon coupling in planar chiroplasma–graphene waveguides, Plasmonics 18, 2023: 1029-1035. https://doi.org/ 10.1007/s11468-023-01824-x
  • [24] Umair M., Ghaffar A., Alkanhal M.A.S., Alqahtani A.H., Khan Y., Transverse electric surface waves in ferrite medium surrounded by plasma layers, Journal of the European Optical Society - Rapid Publications 16, 2020: 17. https://doi.org/10.1186/s41476-020-00138-3
  • [25] Zhang X., Xu Q., Xia L., Li Y., Gu J., Tian Z., Ouyang C., Han J., Zhang W., Terahertz surface plasmonic waves: A review, Advanced Photonics 2(1), 2020: 014001. https://doi.org/10.1117/ 1.AP.2.1.014001
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4c26890f-4dbb-4cc2-9826-183f63ac7c75
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.