PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Groins and submerged breakwaters : new modeling and empirical experience

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The relationship between the effectiveness of groins and their technical condition was studied. The supporting role of groins in artificial shore nourishment was tested using the theoretical modeling of hydrodynamic and morphodynamic processes in the nearshore zone. This modeling scheme was developed as to represent the actual coastal situation occurring on the shores of the Hel Peninsula (the Gulf of Gdańsk, the southern Baltic Sea). Based on the results of computations and the results of field observations, recommendations were prepared on the design and maintenance of groins. The second part of the paper is devoted to submerged breakwaters. The theoretical modeling of wave-current fields near the segmented submerged breakwaters led to the determination of coefficients of wave transmission and rip current velocities, which finally yielded a piece of design advice. In all numerical simulations, the Delft3D software was used.
Rocznik
Strony
20--34
Opis fizyczny
Bibliogr. 26 poz., rys., tab., wykr.
Twórcy
autor
  • Institute of Hydro-Engineering of the Polish Academy of Sciences, ul. Kościerska 7, 80-328 Gdańsk, Poland
autor
  • Institute of Hydro-Engineering of the Polish Academy of Sciences, ul. Kościerska 7, 80-328 Gdańsk, Poland
  • Institute of Hydro-Engineering of the Polish Academy of Sciences, ul. Kościerska 7, 80-328 Gdańsk, Poland
  • Institute of Hydro-Engineering of the Polish Academy of Sciences, ul. Kościerska 7, 80-328 Gdańsk, Poland
Bibliografia
  • [1]. Aminti, P., Cammelli, C., Cappietti, L., Jackson, N.L., Nordstrom, K.F., Pranzini, E. (2004). Evaluation of beach response to submerged groin construction at Marina di Ronchi, Italy, using field data and a numerical simulation model. Journal of Coastal Research, Special Issue no. 33. Functioning and Design of Coastal Groins: The Interaction of Groins and the Beach-Process and Planning (WINTER 2004), pp. 99-120.
  • [2]. Bacamazo, L. & Grosskopf W (1999). Beach response to groins. In proceedings of Coastal Sediments, June 21-23 (pp. 2073¬2089). New York, USA: ASCE.
  • [3]. Badiei, P., Kamphuis W. & Hamilton D. (1994). Physical experiments on the effect of groins on shore morphology. In proceedings of the 24th International Conference on Coastal Engineering, October 23-28 (pp. 1782-1796). Kobe, Japan: ASCE.
  • [4]. Cappietti, L. (2011). Converting Emergent Breakwaters into Submerged Breakwaters. E Journal of Coastal Research, SI 64 (Proceedings of the 11th International Coastal Symposium), 479-483. Szczecin, Poland, ISSN 0749-0208.
  • [5]. Dabees, M., Moor B. & Humiston K. (2004). Enhancement of T-groins designed to improve downdrift shoreline response. In proceedings of 29th International Conference on Coastal Engineering, September 19-24 (pp. 2423-2435). Lisbon, Portugal: ASCE.
  • [6]. De Groot, M. B., Breteler M.K. & Berendsen E. (2004). Feasibility of geocontainers at the sea shore. In proceedings of 29th International Conference on Coastal Engineering, September 19-24 (pp. 3904-3913). Lisbon, Portugal: ASCE.
  • [7]. Deltares 2010a. Delft3D-WAVE. Simulation of short-crested waves with SWAN - User Manual. Version 3.04, rev. 11114. Deltares, Delft, The Netherlands.
  • [8]. Deltares 2010b. Delft3D-FLOW. Simulation of multi¬dimensional hydrodynamic flow and transport phenomena, including sediments - User Manual. Version 3.04, rev. 11114. Deltares, Delft, The Netherlands.
  • [9]. Fleming, C.A. (1990). Principles and Effectiveness of Groynes. In K.W. Pilarczyk (Ed.), Coastal Protection (121-156). Rotterdam, the Netherlands: Balkema Press.
  • [10]. Fredsöe, J. (1984). Turbulent boundary layer in wave-current interaction. Journal of Hydraulic Engineering ASCE. 110: 1103-1120.
  • [11]. Hanson, H., Thevenot M. & Kraus C. (1996). Numerical simulation of shoreline change for longshore sand waves at groin field. In proceedings of 25th International Conference on Coastal Engineering, September 2-6 (pp. 4024-4037). Orlando, USA: ASCE.
  • [12]. Hanson, H., Larson M. & Kraus N. (2010). Modelling long-term beach changes under interacting longshore and cross-shore processes. In proceedings of 32th International Conference on Coastal Engineering, 30 June - 5 July (electronic edition). Shanghai, China: Coastal Engineering Research Council.
  • [13]. Koerner, G. & Koerner R. (2006). Geotextile Tube Assessment Using a Hanging Bag Test. Geotextiles and Geomembranes. 24: 129-137.
  • [14]. Kunz, H., (1996). Groynes on the East-Frisian Islands: History and experiences. In proceedings of 25th International Conference on Coastal Engineering, September 2-6 (pp. 2128-2141). Orlando, USA: ASCE.
  • [15]. Leshchinsky, D., Leshchinsky O., Ling H.I. & Gilbert P.A. (1996). Geosynthetic tubes for confining pressurized slurry: some design aspects. Journal of Geotechnical Engineering, ASCE, 122(8): 682-690.
  • [16]. Nakamura, S. (2010). Passage rate of bedload transport due to a groin in consideration of wave climate. In abstracts of 32th International Conference on Coastal Engineering, 30 June - 5 July (paper 160). Shanghai, China: Coastal Engineering Research Council.
  • [17]. Pilarczyk K. & Zeidler R. (1996). Offshore breakwater and shore evolution control. Rotterdam, the Netherlands: A. A. Balkema.
  • [18]. Pruszak, Z., Ostrowski R., Skaja M. & Szmytkiewicz M. (2000). Wave climate and large-scale coastal processes in terms of boundary conditions. Coastal Engineering Journal, 42 (1): 31-56.
  • [19]. Pruszak Z. (2004). Polish coast-two cases of human impact. BALTICA, Vol. 17 (1), 34-40.
  • [20]. Raudkivi, A. & Dette H. (2002). Reduction of sand demand for shore protection. Coastal Engineering, 45: 239-259. DOI: 10.1016/S0378-3839(02)00036-4.
  • [21]. Schoonees, J., Theron A. & Bevis D. (2006). Shoreline accretion and sand transport at groynes inside the port of Richard Bay. Coastal Engineering, 53: 1045-1058. DOI: 10.1016/j. coastaleng.2006.06.006.
  • [22]. Schönhofer, J. (2014). Rip currents at beach with multiple bars - theoretical description and in-situ observations. PhD thesis, IBW PAN, Gdańsk, 172 pp. (in Polish).
  • [23]. Trampenau, T., Goericke F. & Raudkivi A. (1996). Permeabile pile groins. In proceedings of 25th International Conference on Coastal Engineering, September 2-6 (pp. 2142-2151). Orlando, USA: ASCE.
  • [24]. Uno, Y., Goda Y. & Nobuyuki O. (2010). Suspended-sediment- based beach morphology model applied to submerged groin system. In proceedings of 32th International Conference on Coastal Engineering, 30 June - 5 July (electronic edition). Shanghai, China: Coastal Engineering Research Council.
  • [25]. Van der Meer, J.W. & d’Angremond K. (1991). Wave transmission at low crested structures. In the proceedings of Conference Coastal Structures and Breakwaters. November 6-8 (pp. 25¬42). London, England: ICE & Held.
  • [26]. Van Rijn, L.C. (1993). Principles of sediment transport in rivers, estuaries and coastal seas. The Netherlands: Aqua Publications.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4c2627ca-1093-4d20-b53c-1bdbf1552dc2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.