PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Automated root cause analysis of non-conformities with machine learning algorithms

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
To detect root causes of non-conforming parts - parts outside the tolerance limits - in production processes a high level of expert knowledge is necessary. This results in high costs and a low flexibility in the choice of personnel to perform analyses. In modern production a vast amount of process data is available and machine learning algorithms exist which model processes empirically. Aim of this paper is to introduce a procedure for an automated root cause analysis based on machine learning algorithms to reduce the costs and the necessary expert knowledge. Therefore, a decision tree algorithm is chosen. A procedure for its application in an automated root cause analysis is presented and simulations to prove its applicability are conducted. In this paper influences affecting the success of detection are identified and simulated e.g. the necessary amount of data dependent on the amount of variables, the ratio between categories of non-conformities and OK parts as well as detectable root causes. The simulations are based on a regression model to determine the roughness of drilling holes. They prove the applicability of machine learning algorithms for an automated root cause analysis and indicate which influences have to be considered in real scenarios.
Rocznik
Strony
60--72
Opis fizyczny
Bibliogr. 22 poz., rys., tab.
Twórcy
autor
  • Laboratory for Machine Tools and Production Engineering WZL of RWTH Aachen, Chair of Production Metrology and Quality Management, Aachen, Germany
autor
  • Laboratory for Machine Tools and Production Engineering WZL of RWTH Aachen, Chair of Production Metrology and Quality Management, Aachen, Germany
autor
  • Boeing Research & Technology, Europe
  • Laboratory for Machine Tools and Production Engineering WZL of RWTH Aachen, Chair of Production Metrology and Quality Management, Aachen, Germany
Bibliografia
  • [1] MUNOZ P., DE LA BANDERA I., KATHIB E.J., GÓMEZ-ANDRADES A., SERRANO I. BARCO R., 2017, Root Cause Analysis Based on Temporal Analysis of Metrics Toward Self-Organizing 5G Networks, IEEE Transactions on Vehicular Technology, 66, 3.
  • [2] UHLMANN A. HOHWIELER E., GEISERT C., 2017, Intelligent Production Systems in the Era of Industrie 4.0 – Changing Mindsets and Business Models, Journal of Machine Engineering, 17/2, 5.
  • [3] LANGLEY P., SIMON H. A., 1995, Applications of Machine Learning and Rule Induction, Institute for the Study of Learning and Expertise, Palo Alto.
  • [4] WUEST T., WEIMER D., IRGENS D., THOBEN K.-D., 2016, Machine Learning in manufacturing: advantages, challenges, and applications, Journal of Production & Manufacturing Research, 4/1, 23.
  • [5] SMOLA A., VISHWANATHAN S.V.N., 2008, Introduction to Machine Learning, Cambridge.
  • [6] UHLMANN E., PASTL PONTES R., LAGHMOUCHI A., HOHWIELER E., FEITSCHER R., 2017, Intelligent Pattern Recognition of SLM Machine Energy Data, Journal of Machine Engineering, 17/2, 65.
  • [7] DUPHILY R.J., 2014, Root Cause Investigation Best Practices Guide, AEROSPACE, Chantilly.
  • [8] DOGGET A.M., 2005, Root Cause Analysis: A Framework for Tool Selection, The Quality Management Journal, 12/4, 34.
  • [9] DOGGET A.M., 2004, A Statistical Comparison of Three Root Cause Analysis Tools, Journal of Industrial Technology, 20/2.
  • [10] YANG K., TREWN J., 2004, Multivariate statistical methods in quality management, McGraw-Hill, New York.
  • [11] DAVIM J.P., 2003, Study of drilling metal-matrix composites based on the Taguchi techniques, Journal of Materials Processing Technology, 132.
  • [12] THOMPSON J.M., OLSON M.S., VISWANATHAN G., HAWKS B.A., DOSHI B.A., 2015, Automated root cause analysis, US Patent, US 9104572 B1.
  • [13] PEDERSEN H., 2017, Automated root cause analysis, US Patent, US 9606533 B2.
  • [14] QURESHI W., HASSAN T., ROACH K.B., BALA G.P., 2011, Automated root cause analysis of problems associated with software application deployments, US Patent, US 8001527 B1.
  • [15] PFINGSTEN J.T., 2007, Machine Learning for Mass Production and Industrial Engineering, Dissertation, Tübingen.
  • [16] SHALEV-SHWARTZ S., BEN-DAVID S., 2014, Understanding Machine Learning – From Theory to Algorithms, Cambridge.
  • [17] GÈRON A., 2017, Hands-on machine learning with Scikit-Learn and TensorFlow. Concepts, tools, and techniques to build intelligent systems, 2nd release. Beijing [etc.], O'Reilly.
  • [18] LANTZ B., 2013, Machine Learning with R, Packt Publishing, Birmingham.
  • [19] SEN K., VISWANATHAN M., AGHA G., 2004, Statistical Model Checking of Black-Box Probabilistic Systems, CAV 2004, Computer Aided Verification, 202.
  • [20] RUTKOWSKI L., JAWORSKI M., PIETRUCZUK L., DUDA P., 2014, The CART decision tree for mining data streams, Information Science, 266.
  • [21] ANYANWU M.N., SHIVA S.G., 2009, Comparative Analysis of Serial Decision Tree Classification Algorithms, International Journal of Computer Science and Security, Malaysia, 3/3, 230.
  • [22] CURRAM S.P., MINGERS J., 1994, Neural Networks, Decision Tree Induction and Discriminant Analysis: An Empirical Comparison, The Journal of the Operational Research Society, 45/4, 440.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4c2520c6-dd55-426c-966a-b9db0837a233
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.