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AUTOMATED ROOT CAUSE ANALYSIS OF NON-CONFORMITIES WITH 

MACHINE LEARNING ALGORITHMS 

To detect root causes of non-conforming parts - parts outside the tolerance limits - in production processes a high 

level of expert knowledge is necessary. This results in high costs and a low flexibility in the choice of personnel 

to perform analyses. In modern production a vast amount of process data is available and machine learning 

algorithms exist which model processes empirically. Aim of this paper is to introduce a procedure for  

an automated root cause analysis based on machine learning algorithms to reduce the costs and the necessary 

expert knowledge. Therefore, a decision tree algorithm is chosen. A procedure for its application in an automated 

root cause analysis is presented and simulations to prove its applicability are conducted. In this paper influences 

affecting the success of detection are identified and simulated e.g. the necessary amount of data dependent on  

the amount of variables, the ratio between categories of non-conformities and OK parts as well as detectable root 

causes. The simulations are based on a regression model to determine the roughness of drilling holes. They prove 

the applicability of machine learning algorithms for an automated root cause analysis and indicate which 

influences have to be considered in real scenarios. 

1. INTRODUCTION  

Despite the increasing availability of automated data science methods, analysis of non-

conforming parts (short: non-conformities; defined as violation of tolerance limits) is still 

dependent on the expertise of employees [1, 2]. This expertise is used to detect root causes 

in small batch production processes of complex products and is therefore – in connection 

with the associated work force – a big time and cost factor for companies [3]. Regarding the 

manual analysis, the result of a root cause analysis (RCA) is affected by operator influences. 

This dependency is reinforced by an increased complexity due to the vast amount of process 

data available in modern production environments. While large amounts of data have 
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potential to include a lot information, the complexity may lead to wrong conclusions or 

causal relations being undiscovered. Thus, an automated solution is required [4].  

New developments in the fields of mathematics and computer science offer 

possibilities to manage and analyse large amounts of (complex) data automatically.  

In particular, the different Machine Learning (ML) approaches promise fast and reliable 

results [4]. Its increasing application is assisted by the ability of analysing complex data  

of different types and sources, finding patterns in unstructured raw data and calculate 

models for prediction, regression or detection [5, 6].  

The overall goal of this paper is to automate the previously manual RCA with ML 

algorithms, without using predefined root causes as training. Non-conformities are analyzed 

and attributed to responsible process parameters (root causes) without special knowledge 

about the production process or the product. This work specifically addresses the use case  

of small batch production. Due to the low amount of data of such a production and the 

resulting non-applicability of the algorithms, a production-related simulation model is set up 

with which the ML algorithm is to be trained. The trained model is then applied to real data 

and root causes can be analyzed. During the simulation, the main aspect is the identification 

and quantification of various influencing parameters on the performance of ML. These are 

to be considered in the simulation and in the transfer to the real production scenario. 

After a short description of current RCA, ML is introduced against the background  

of an automated RCA. The selection of an appropriate ML algorithm, the training of it and 

the different influencing parameters are described in Chapter 3 and 4. 

2. ROOT CAUSE ANALYSIS 

The process of RCA consists of the collection of data and its systematic analysis to 

perform a root cause identification. Eliminating the root cause of a non-conformity means to 

prevent the occurrence of it [7]. 

Common tools for RCA are Cause-and-Effect Diagrams, Interrelationship Diagrams 

and Current Reality Trees. Using the same causal logic, all of them can be used individually 

or in tandem. The methods process the data, so that the unstructured data can be sorted and 

root causes for non-conformities can be identified by uncovering input/output relationships 

[8]. 

Dogget A.M. shows in [9], that it is not possible to distinguish the three methods in 

their ability to identify root causes. The methods are characterized by manual processes and 

thus are dependant on the experts’ background. Furthermore, the processes become tedious 

with increasing complexity attributing to the fact that different experts will arrive at 

different conclusions [8]. 

To counteract these disadvantages, the detection of root causes of non-conformities 

can be done using automated algorithms. In [12–14] different approaches to  

an automated RCA can be found. However, these have either a pure reference to software 

testing or the performance of computer resources and therefore cannot be applied to  

the context of a production processes. In [14], Pederson H. creates the link of the RCA to  
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a complex product using the comparison of different timeslots – a timeslot of normal 

operation and one of misbehaviour operation. Although the method recognizes different so 

called misbehaviour patterns, in the context of the comparison, however, it only provides  

a list of possible indicators, which were rated one to one hundred in each case. 

In summary, an algorithm has to be found which automatically analyzes root causes  

of non-conformities in a (small batch) production process without special expertise or 

knowledge about the process 

3. DECISION TREES FOR AUTOMATED ROOT CAUSE ANALYSIS 

The design of many ML algorithms allows analysing a vast amount of data with high 

dimensionality and is therefore an alternative in cases of highly complex data/problems and 

vast required expert knowledge [2, 15]. In addition to the possibility of automation, ML 

algorithms offer the possibility of eliminating human influence on the results of a detection 

of root causes. It addresses these problems by extracting a model for describing  

the relationships directly from the observed data without external input and improves  

the accuracy and/or the efficiency of the detection of root causes by discovering regularities. 

For non-conformities, responsible process parameters are identified [3, 15, 16]. 

Common methods of ML are described and it is explained how an algorithm is 

selected for the automated RCA of non-conformities in a small batch production 

(Chapter 3.1). This selection then forms the basis for the simulation used to train the model 

and later for the use in the real production scenario. Chapter 3.2 describes the exemplary 

RCA with a C5.0 decision tree. 

3.1. DESCRIPTION AND SELECTION OF A ML ALGORITHM FOR AN AUTOMATED ROOT  

CAUSE ANALYSIS 

ML methods are classified into four categories depending on the amount and type  

of supervision: 

- Supervised learning: In supervised learning, the training data fed to the ML method 

includes the desired solutions (e.g. classification in OK and Not-OK), called labels 

[12]. With supervised learning a predictive model can be generated [17].  

- Unsupervised learning: In unsupervised learning the complete training dataset is 

unlabelled. Its objective is to benefit from the insight gained by summarizing data in 

different ways. It is used to discover patterns without any existing knowledge about 

the dataset [17]. 

- Semi-supervised learning: In semi-supervised learning algorithms can deal with 

partially labelled and unlabelled data. Most semisupervised learning algorithms are 

combinations of unsupervised and supervised algorithms [17]. 

- Reinforcement Learning: Reinforcement Learning does not need labels but a goal 

that needs to be defined. The learning algorithm can observe the environment, select 

and perform actions, and get rewards in return the closer it gets to the goal. The aim  
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of the algorithm is to identify what is the best strategy, to get the most reward or 

success over time [12]. 

Fig. 1 gives a short overview about ML algorithms based on the type of training. 

 

Fig. 1. Overview about categories of ML methods based on the type of training, inputs and use cases (based on [17]) 

Considering the use case of an automated RCA in production processes, labelled data 

(OK and n.OK – conformal, non conformal) can be assumed. Regarding the necessary input 

for the different categories of ML algorithms, supervised learning algorithms suit  

the described use case best (compare with Fig. 1). For the identification of the root causes, 

the algorithm should analyze the process independently. The aim is to identify unknown 

root causes with the algorithm from measured process parameters without learning  

the algorithm with the root causes. For this purpose, the structure of the (process) model 

created by the algorithm has to be analyzed. Only models in which the input/output 

relationship is transparent are suitable for such an analysis [18]. Accordingly, a white box 

model is chosen for the automated RCA approach. Black-box models [19] like the Support 

Vector Machines or Neural Networks algorithm are not suitable. They would need pre-

defined root causes as training. Due to its wide distribution and robustness, the Decision 

Tree is a suitable white box model and supervised learning algorithm for a RCA of non-

conformities.  

A decision tree starts with a root node where a first decision is required. The decision 

either passes through decision nodes or ends in terminal nodes. A decision node as well as 

the root node requires a decision for one of the alternatives. Even the number of alternative 

decisions is not limited, the number of possible choices in one decision node is restricted to 

one alternative. Ending in a terminal node means, a final decision can be made. The 

decision tree is complete when all decision nodes end in terminal nodes (see Fig. 2) [12].  

Decision trees need labelled data. The data can be attributive or variable. One  

of the advantages of decision trees is that they require very little data preparation. They aim 

to help with making decisions by providing simple choices. The choices are easily 

understood without statistical knowledge [12]. The decision tree produces a model with 

minimal user input [11] and uses a method called recursive partitioning. This method splits 
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the data in subsets, which are repeatedly split into smaller subsets until a stopping criterion, 

for example the entropy of data, is met [12]. 

 

Fig. 2. Components of decision trees according to [12] 

As a result, decision trees can give rules that lead to certain non-conformities.  

The rules are mostly designed according to ‘if conditions’. For the identification of root 

causes, the tree is decomposed. Using the characteristics of white box models, the tree is 

analysed stepwise. Each decision node represents a process parameter with its value range 

and is therefore a possible root cause.  

For the selection of the decision tree algorithm to be implemented in the scenario  

of the small batch production process, it must be taken into account that both attributive and 

continuous data (together) must be able to be evaluated via the model. Neither continuous 

nor attributive data can be categorically excluded in the use case. There are two types  

of decision trees: binary trees and non-binary. Binary ones can only have two nodes as  

a output of previous node – for non-binaries no restrictions are set. [20] Two of the most 

common algorithms (both able to handle attributive and continuous data) are the CART 

algorithm (binary) [21] and the C5.0 algorithm (non-binary). Since in general binary 

decisions trees lead to larger and therefore more complex trees, the decision was made for 

the C5.0 algorithm. Additionally, the C5.0 algorithm has become the industry standard for 

decision trees and for many problems it delivers results directly out of the box. For a better 

performance of the C5.0 algorithm the input data is discretized [12]. 

3.2. EXEMPLARY ROOT CAUSE ANALYSIS WITH A C5.0 DECISION TREE 

The application of the decision tree as the basis for the automated RCA is divided into 

two steps: The training and the RCA. For the training, simulation data is used to build  

the tree structure. Discretized process parameters and inspection parameters (OK/n.OK-

labels) for every part are the input for the decision tree algorithm. 80% of the given data was 

used for the training and 20% for the test of the model. Such a test prevents the so called 

overfitting – “fitting to individual data points rather than the trend” [22]. The test adopts  
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the developed model and verifies the results determined with it by applying the model to  

the remaining 20% of the data. The general procedure and the resulting decision tree using 

the given data is shown in Fig. 3 and Fig. 4: 

 

Fig. 3. Procedure of Model Building: Generated process data is labelled and, together with other parameters,  

serves as input for modelling  

 

Fig. 4. Resulting Decision Tree: Left bar – number of classified violations of the lower tolerance limit (n.OK-part); 

middle bar – number of classified OK parts; right bar – number of classified violations of the upper tolerance limit 

(n.OK-part) 
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In the resulting decision tree the impact of the different parameters on the output can 

be observed without any special expertise or knowledge about the product or the production 

process. It is correlated to the order the tree is split up. Possible root causes can be detected 

by interpreting the different bars of the terminal nodes (see Fig. 2) stepwise according to  

the procedure described in Chapter 3.1. Within the example, a high bar in the middle means  

of a box that this parameter setting leads to parts within the tolerance. High bars on the left 

(violation of the lower tolerance) or on the right (violation of the upper tolerance) mean that 

the parameter setting leads to parts, which are out-of-tolerance (n.OK). For users this means 

that certain parameter settings respectively combination of parameter settings lead to  

non-conformities. These settings can be seen as root causes for non-conformities and should 

be avoided in further production. By using process parameters as model input, the root 

causes are identified by decomposing the decision tree. It is not necessary to know root 

causes in advance. They are explicitly not integrated into the training of the algorithm.  

The use of the root causes for training leads to the fact that unknown root causes cannot be 

uncovered by algorithms and attempts are made to explain all non-conformities with 

existing root causes. In Fig. 4, the order of the splits indicates that the parameter f has  

the biggest impact on the result, after that T, then V. The analysis of the nodes determines 

that the parameter settings leading to node 1 and 3 lead to less non-conformities (OK parts – 

96.68% for node 1, 88.79% for node 3; n.OK parts – 3.32% for node 1 and 11.21% for node 

3). The parameter settings leading to the nodes 5 and 7 produce predominantly non-

conformities (n.OK. parts – 71.5% for node 5, 89.9% for node 7). The stepwise analysis 

shows that primary root causes are to be found in node 7 and node 5. This shows that  

the root causes are a too high f (node 5; f = 5) or a too low V (node 7; V = 1–3) at f = 4  

and T = 5.  

4. SIMULATION-BASED PROOF OF THE APPLICABILITY OF A DECISION TREE 

FOR THE AUTOMATED ROOT CAUSE ANALYSIS 

Within the small batch production scenario, simulations are used to provide a basis for 

the application of the decision tree. It provides users with knowledge about the algorithm 

and trains the model, which enables the RCA. The methodology will be described briefly to 

subsequently identify influencing parameters on the performance of the decision tree, to 

quantify them with a simulation and to show the applicability of the decision tree to real 

production scenarios with given characteristics (e. g. complexity or dimensions). 

4.1. METHODOLOGY 

Due to the low amount of available data in small batch production and the resulting 

non-applicabilty of ML algorithms, a production-related simulation model is set up to 

generate data with specific properties. The gained knowledge and the trained model enable 

the application to the data of the small batch production. Aim of the simulation is to 

quantify the influence of different scenarios (e.g. sample size or distribution) on the output 
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of the decision tree in a small batch production. Various (performance) influencing 

parameters have been identified (e. g. sample size or number of parameters). By applying  

a Monte Carlo simulation to a process model, these parameters can be quantified. It also 

shows the general applicability of a decision tree to the use case, which will serve as  

the basis for the application to the real production scenario. 

4.2. SIMULATION SCENARIOS 

To prove the applicability of the decision tree algorithm to an automated RCA 

influences affecting the success of the detection are identified and a simulation to quantify 

the influences is conducted. The Monte Carlo simulation (using R) creates an input with 

specific properties, which trains a decision tree (created with IBM SPSS Modeler) as part  

of the automated RCA so that it can later be applied to real data from equivalent production 

processes. The properties can be taken from the real production scenario - e.g. limits, 

distributions, special features of the process. The simulation is based on a linear regression 

model by Davim J.P. [11] to determine the roughness of drilling holes and is described by 

the cutting speed, the feed rate and the cutting time (see equation (1)). It was chosen for 

simulation because it is a simple production-related model that describes the effects  

of process parameters on a product feature (which can be analysed afterwards). As a model, 

it simplifies the reality of the drilling process and does not represent all influences on  

the process. For the investigation of the applicability of ML algorithms, the model  

is sufficient. 

TVfRa
33 10130.810911.1588.2587.0    (1) 

Ra – roughness [mm], f – feed [mm/rev], V – cutting speed [m/min], T – cutting time [min]. 

With the help of the simulation and a selection of tolerance limits, different scenarios 

of production processes can be implemented. To simulate the characteristics of a real 

drilling process, a Monte Carlo simulation randomises the input for the regression (whose 

output is again the input of the decision tree). Each input variable (f, V, T) underlies  

a uniform (UD) or normal distribution (depending on the scenario). In the context  

of the simulations, different parameters (tolerance limits, distributions, etc.) are varied.  

The parameters and their distribution are described in Table 1. 

Table 1 Properties of the Input Parameters of the Simulation Model 

Parameter Mean Standard Deviation (SD) Limits of UD Tolerance Limits 

F 0.12 0.027 +/- 3SD - 

V 40 3.33 +/- 3SD - 

T 9 2 +/- 3SD - 

Ra - - - 0.7197; 1.0575 

When transferring the algorithms to real production processes, the sensitivity  

of the output should be considered in relation to the following points identified by a survey 

of experts in the fields of production and statistics: 
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1. The effect of the sample size on the amount of correctly identified root causes. 

2. The effect of the input distribution on the result. 

3. The necessary amount of data depending on the number of variables, higher order 

terms and interactions.  

4. The ratio between categories of non-conformities and OK parts, describing how 

much non-conformities have to be in the data set to reliably built up a decision tree. 

5. The number of intervals for the discretization.  

Sample Size 

In order to test the sensitivity of ML algorithms to the described points different 

production scenarios are modelled and simulated. Starting with the influence of the sample 

size on the amount of correctly classified data points, the simulation is performed with the 

input limited to a specific number of data points – the sample size – for each parameter (see 

equation (1)). The results of the algorithm were compared with results from a Monte Carlo 

simulation and the quotient of these two factors gives a percentage indication of how much 

data has been correctly classified – the Classification Index (CI). 80% of the data was used 

to train the model. The middle column in Table  and Table indicates how high the CI is for 

training data. The remaining 20% of the data was used to test the model. The trained model 

is taken and evaluates how well the data (20%) can be explained by it (right column). As a 

result, the performance of the algorithm can be determined for different sample sizes and 

can be seen in Table  and Table. Table  and Table show that from a sample size  

of 100 for uniformly distributed data and from 50 for normal distributed data, the CI is 

within a range of 0.87 percentage points. The high percentage in the tests shows, that  

the model is not overfitted to the given dataset.  

Table 2. Influence of the sample size on uniformly distributed input data (‘-‘ : There is not enough data to create  

a decision tree. The data can not be split and the tree starts / ends in the root node) 

Sample size 
Training – Correct Classification 

in % 

Test – Correct Classification 

in % 

10 - - 

50 77.78 71.43 

100 88.00 100 

1,000 89.86 92.54 

10,000 91.02 91.31 

100,000 90.84 91.09 

1,000,000 90.97 91.10 

Table 3. Influence of the sample size on normally distributed input data (‘-‘ : There is not enough data to create  

a decision tree. The data can not be split and the tree starts / ends in the root node) 

Sample size 
Training – Correct Classification 

in % 

Test – Correct Classification 

in % 

10 - - 

50 100 100 

100 98.67 100 

1,000 98.12 99.00 

10,000 98.71 98.59 

100,000 98.90 98.86 

1,000,000 98.15 98.13 
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Comparison of different input distributions 

If the results (Table  and Table) between a uniformly distributed and normal 

distributed input of one sample size are compared, it is noticeable that the CI of the normal 

distribution is higher for all sample sizes. Applied to reality, the distribution of the input 

parameters has to be taken into account when choosing an algorithm.  

Influence of interdependencies, higher order terms and the amount of variables 

To analyse the dependencies between the variables and the number of correctly found 

root causes, the model is extended by further independent variables. The added variables are 

not based on any further simulations and serve only for clarification – they do not represent 

real influencing parameters and relationships. They serve the purpose of analyzing  

the algorithm and its influences. 

A distinction can be made between the addition of linear terms, higher-order terms, 

and interaction terms. The following formulas were used for the addition of linear terms.  

The terms (b)-(d) are continuously added to the basic formula (a) in equation (2a–d).  

)d()001.0(

)c()10289.0(

)b()10289.0(

)(a)10130.810911.1588.2587.0(

3

3

33

Temp

W

K

tVfRa















 (2a–d) 

K – force, W – wear, Temp – drilling temperature, b–d – added terms 

The results (sample size: 100,000) in Table show that there is no major deterioration of 

finding root causes, if a linear model can be assumed. For comparison, without added terms 

the CI randomly varies between 88% and 93% (comparison of (a) in Table 4 and  

the Test CI of 100,000 in Table 2 with the same model). It can be assumed that  

the performance of the algorithm is independent of the number of linear terms in the model.  

Table 4. Influence of the dimensionality – linear added terms (b,c,d) 

Sample 

size 

(a) 

3 linear terms CI 

(b) 

4 linear terms CI 

(c) 

5 linear terms CI 

(d) 

6 linear terms CI 

100,000 90.9 90.9 90.8 91.2 

For the investigation of the influence of higher order terms (reference: equation (1)), 

the following formulas were used describing terms of the second (equation (3); T is 

quadratic) and third order (equation (4); V is quadratic, T is cubic). As in equations 2a–d,  

the extensions of equation 1 are not based on physical relationships. The aim is to quantify 

the relationship between the performance of the ML and higher-order terms. The physical 

results for the surface roughness are not comparable with those of equation 1. 

233 10130.810911.1588.2587.0 TVfRa
   (3) 

3323 10130.810911.1588.2587.0 TVfRa
   (4) 
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Table 5. shows influence of higher order terms. The CI stays within a range of 3.9 

percentage points. A slightly positive, proportional effect is suspected. 

Table 5. Influence of the dimensionality – adding of higher order terms 

Sample size 
Linear term  

(equation 2a) CI 

2
nd

 order term 

CI 

3
rd

 order term 

CI 

100,000 90.6 94.5 94 

The last simulation includes two examples for additional interaction terms (reference: 

equation (1)). In equation 5, an interaction term of two variables (V and T) has been added - 

in Equation 6 the interaction replaces the individual effects of V and T. With regard to the 

physical effects, reference is made to the description of equations 2 and 3. 

VTTVfRa
433 10289.010130.810911.1588.2587.0    (5) 

TVfRa
33 10130.810911.1588.2587.0    (6) 

As a result (see Table 6) it can be shown that the more influence the interaction term 

has, the lower is the CI (CIExample2<CIExample1). It also shows that the amount of correctly 

found root causes is not affected (within this scenario – equation 5), if the linear terms have 

a higher effect on the dependent variable (CIWithout IA≈CIExample1).  

Table 6. Influence of the dimensionality – adding interactions (IA) 

Sample size 
Without IA 

CI 

IA Example 1 

CI 

IA Example 2 

CI 

100,000 90.6 91.2 81.5 

Effect of n.OK/OK-ratio 

For the determination of the influence of the ratio between n.OK and OK, the ratio is 

continuously reduced by enlarging the permitted tolerance and therefore reducing  

the number of n.OK parts. Table 7 shows that the CI stays acceptable, as long as the ratio  

of n.OK/OK stays above 7.07%. For ratios lower than that, no decision tree can be created 

anymore – the algorithm cannot split the data and therefore all data is categorized as OK.  

Table 7. Influence of the n.OK/OK – ratio  

NOK/OK 17.23% 8.69% 7,41% 7.07% 

CI (Training) 91.99 93.12 90.05 91.74 

CI (Test) 89.05 93.53 93.24 93.03 

Influence of the discretization  

The C5.0 algorithm was used for the creation of the decision tree. Therefore, the data 

was discretized. The following simulation shows the influence of the increasing number  

of intervals of the CI. Starting with five intervals the amount is increased as long as the tree 
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changes due to the added intervals (for numbers of interval bigger than 40, the tree does not 

change). As seen in Table 8 the index improves until it reaches a maximum (*) at 15 

intervals. A further increase in the number of intervals leads to an overfitted model 

respectively a model that cannot handle the number of intervals. Therefore, the performance 

of the decision tree decreases.  

Table 8. Influence of the discretization  

# intervals 5 10 15 20 25 30 35 40 

CI 88.06 94.03 95.02* 88.06 91.04 89.55 91.04 79.6 

The simulation demonstrated the applicability of the decision tree for an automated 

RCA of non-conformities. Through the different simulations it became clear which aspects 

(sample size, distributions, etc.) in the transfer to real scenarios have to be considered and 

how these influence the performance of the algorithm. It is shown that when using ML for 

RCA, the sample size as well as terms of higher order or interactions have to be considered.  

5. SUMMARY AND OUTLOOK 

With the help of different simulated experiments on a simple linear model for  

the surface roughness it was shown that a decision tree can be applied to the problem  

of automated RCA of non-conformities without any special knowledge of the process. After 

identifying critical parameters for the applicability of ML to production scenarios, they were 

investigated using a Monte Carlo simulation. Additionally, the simulations clarify limits in 

the application of the C5.0 decision tree algorithm for the detection of root causes of non-

conformities contrasting the advantage of an automated, non-knowledge based analysis.  

In future research, the insights gained from the simulation as well as the resulting 

production-related simulation model will be applied to a real small batch production 

scenario. A real drilling process will be used for the final confirmation of the approach.  

In addition to the decision tree, further ML algorithms need to be applied to the problem to 

compare their applicability. In particular, the unsupervised learning method ‘Association 

Rule Learning’ is considered as interesting. This can be used to objectively discover new 

relationships without having any knowledge about the data. It should also be examined how 

the application of a combination of different algorithms (possibly from different categories 

of ML – described in Chapter 3) to the given question can lead to further results. 
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