PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Statistical Optimization of the Preparation of HNIW Nanoparticles via Oil in Water Microemulsions

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
HNIW (2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane) is a family member of high-energy density cage nitramines which have so many versatile applications. In this paper, HNIW nanoparticles were prepared by the oil in water microemulsion route. The effects of various experimental parameters on this reaction were investigated using the Taguchi method. The effects of different variables: organic phase, water/organic phase (W1/W2), organic phase/ propanol (W3/W4) and HNIW weight percent, on the particle size of the HNIW were investigated at three distinct levels. Optimal conditions for obtaining HNIW nanoparticles were determined. Performing the process under the optimal conditions proposed by the Taguchi method leads to the production of HNIW nanoparticles with an average size of about 80 nm. The HNIW nanoparticles were characterized using Scanning Electron Microscopy (SEM), Dynamic Light Scattering (DLS), Differential Thermal Analysis (DTA) and X-Ray Diffraction (XRD).
Rocznik
Strony
459--472
Opis fizyczny
Bibliogr. 40 poz., rys., tab.
Twórcy
autor
  • Department of Chemistry and Chemical Engineering, Malek Ashtar University, Tehran, Iran
autor
  • Department of Chemistry, Yasouj University, Yasouj, Iran
  • School of Chemical Engineering, College of Engineering, Tehran University, Iran
  • Department of Chemistry, Yasouj University, Yasouj, Iran
Bibliografia
  • [1] Panikov N.S., Sizova M.V., Ros D., Christodoulatos C.J., Balas W., Nicolich S., Biodegradation Kinetics of the Nitramine Explosive CL-20 in Soil and Microbial Cultures, J. Biodegr., 2007, 18(3), 317-332.
  • [2] Pavlov J., Christodoulatos C.J., Hydrolysis of Hexanitrohexaazaisowurtzitane (CL-20), Energ. Mater., 2007, 25(1), 1-18.
  • [3] Heilmann H.M., Wiessmann U., Stenstrom M.K., Kinetics of the Alkaline Hydrolysis of High Explosives RDX and HMX in Aqueous Solution and Adsorbed to Activated Carbon, Environ. Sci. Technol.,1996, 30(5), 1485-1492.
  • [4] Latypov N.V., Wellmar U., Goede P., Bellamy A.J., Synthesis and Scale-Up of 2,4,6,8,10,12-Hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane from 2,6,8,12-Tetraacetyl-4,10-dibenzyl-2,4,6,8,10,12-hexaazaisowurtzitane (HNIW, CL-20), Org. Process Res. Dev., 2000, 4(3), 156-158.
  • [5] Bayat Y., Ebrahimi H., Fotouhi-Far F., Optimization of Reductive Debenzylation of Hexabenzylhexaazaisowurtzitane (the Key Step for Synthesis of HNIW) Using Response Surface Methodology, Org. Process Res. Dev., 2012, 16(11), 1733-1738.
  • [6] Nielsen A.T., Chafin A.P., Christian S.L., Moore D.W., Nadler M.P., Nissan R.A., Vanderah D.J., Gilardi R.D., George C.F., Flippen A., Synthesis of Polyazapolycyclic Caged Polynitramines, Tetrahedron, 1998, 54(39), 11793-11812.
  • [7] Bayat Y., Hajimirsadeghi S., Pourmortazavi S.M., Statistical Optimization of Reaction Parameters for the Synthesis of 2,4,6,8,10,12-Hexanitro-2,4,6,8,10,12- hexaazaisowurtzitane, Org. Process Res. Dev., 2011, 15(4), 810-816.
  • [8] Tillotson T.M., Hrubesh L.W., Simpson R.L., Lee R.S., Swansiger R.W., Sol-gel Processing of Energetic Materials, Non-Cryst. Solids, 1998, 225, 358-363.
  • [9] Bayat Y., Shirazinia S.R., Marandi R., Ultrasonic Assisted Preparation of Nano HMX, Int. J. Nanosci. Nanotechnol., 2010, 6(4), 210-215.
  • [10] Tillotson T.M., Gash A.E., Simpson R.L., Hrubesh L.W., Satcher J.H., Poco J.F., Nanostructured Energetic Materials Using Sol-gel Methodologies, Non-Cryst. Solids, 2001, 285(1-3), 338-345.
  • [11] Tappan B.C., Brill T.B., Thermal Decomposition of Energetic Materials 86. Cryogel Synthesis of Nanocrystalline CL-20 Coated with Cured Nitrocellulose, Propellants Explos. Pyrotech., 2003, 28(5), 223-230.
  • [12] Yongxu Z.H., Dabin L., Chunxu L., Preparation and Characterization of Reticular Nano-HMX, Propellants Explos. Pyrotech., 2005, 30(6), 438-441.
  • [13] Limin Q., Jiming M., Julin S., Synthesis of Copper Nano Particles in Cotionic Water-in-oil Microemulsions, J. Colloid Interface Sci., 1997, 186(2), 498-500.
  • [14] Marchand K.E., Tarret M., Lechaire J.P., Normand L., Kasztelan S., Cseri T., Investigation of AOT Based Microemulsions for the Controlled Synthesis of MoSx Nanoparticles: an Electron Microscopy Study, J. Colloids Surf. A, 2003, 214(1-3), 239-248.
  • [15] Monnoyer P., Fonseca A., Nagy J.B., Preparation of Colloidal AgBr Particles from Microemulsions, J. Colloids Surf. A, 1995, 100, 233-243.
  • [16] Debuigne F., Jeunieau L., Wiame M., Nagy J.B., Synthesis of Organic Nanoparticles in Different W/O Microemulsions, Langmuir, 2000, 16(20), 7605-7611.
  • [17] Debuigne F., Cuisenaire J., Jeunieau L., Masereel B., Nagy J.B., Synthesis of Nimesulide Nanoparticles in the Microemulsion Epikuron/Isopropyl Myristate/Water/n-Butanol (or Isopropanol), J. Colloid Interface Sci., 2001, 243(1), 90-101.
  • [18] Destréé C., Ghijsen J., Nagy J.B., Preparation of Organic Nanoparticles Using Microemulsions: Their Potential Use in Transdermal Delivery, Langmuir, 2007, 23(4), 1965-1973.
  • [19] Trotta M., Gallarate M., Carlotti M.E., Morel S., Preparation of Griseofulvin Nanoparticles from Water Dilutable Microemulsions, Int. J. Pharm., 2003, 254(2), 235-242.
  • [20] Margulis-Goshen K., Kesselman E., Danino D., Magdassi S., Formation of Celecoxib Nanoparticles from Volatile Microemulsions, Int. J. Pharm., 2010, 393(1-2), 230-238.
  • [21] Hvalec M., Gorsek A., Glavic P., Experimental Design of Crystallization Processes, Acta Chim. Slov., 2004, 51, 245-256.
  • [22] Box G., Hunter W.G., Statistics for Experimenter: an Introduction to Design, Data Analysis and Model Building, John Wiley & Sons, New York, 1978, pp. 75-100, ISBN 9780471093152.
  • [23] Roy K.R., A Primer on Taguchi Method, Van Nostrand Reinhold, New York, 1990, pp. 50-105, ISBN 9780442237295.
  • [24] Ross P.J., Taguchi G., Techniques for Quality Engineering, McGraw-Hill, New York, 1988, ISBN 9780070539587.
  • [25] Montgomery D.C., Design and Analysis of Experiments, 3rd ed., John Wiley & Sons, New York, 1991, ISBN 9781118146927.
  • [26] Roy R.K., Design of Experiments Using the Taguchi Approach, John Wiley & Sons, New York, 2001. ISBN 9780471361015.
  • [27] Taguchi G., Systems of Experimental Design, Kraus, New York, 1987, ISBN 9780527916213.
  • [28] Roy R.K, A Primer on the Taguchi Method, Van Nostrand Reinhold, New York, 1990, ISBN 9780442237295.
  • [29] Pourmortazavi S.M., Hajimirsadeghi S.S, Rahimi-Nasrabadi M., Statistical Optimization of Condition for Synthesis Lead Sulfide Nanoparticles, Mater. Manuf. Process., 2009, 24(5), 524-528.
  • [30] Hsiao Y.F., Tarng Y.S., Huang W., Optimization of Plasma Arc Welding Parameters by Using the Taguchi Method with the Grey Relational Analysis, J. Mater. Manuf. Process., 2008, 23(1), 51-58.
  • [31] Pourmortazavi S.M., Hajimirsadeghi S.S., Kohsari I., Hosseini S.G., Orthogonal Array Design for the Optimization of Supercritical Carbon Dioxide Extraction of Different Metals from a Solid Matrix with Cyanex 301 as a Ligand, J. Chem. Eng. Data, 2004, 49(6), 1530-1534.
  • [32] Carino C., Structural Layout Assessment by Orthogonal Array Based Simulation, Mech. Res. Commun., 2006, 33(3), 292-301.
  • [33] Zhou J., Wu D., Guo D., Optimization of the Production of Thiocarbohydrazide Using the Taguchi Method, J. Chem. Technol. Biotechnol., 2010, 85(10), 1402-1406.
  • [34] Ghammamy S., Baghy M., Using of Taguchi Method for Experimental Design of Crystallization Processes of an Oxidant: Tetraethylammonium Chlorochromate(VI), J. Chem. Crystallogr., 2008, 38(12), 907-912.
  • [35] Matin Tehrani K., Bastani D., Kazemian H., Applying the Taguchi Method to Develop an Optimized Synthesis Procedure for Nanocrystals of T-Type Zeolite, Chem. Eng. Technol., 2009, 32(7), 1042-1048.
  • [36] Bayat Y., Mokhtari J., Preparation of 2,4,6,8,10,12-Hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane from 2,6,8,12-Tetraacetyl-2,4,6,8,12-hexaazaisowurtzitane Using Various Nitrating Agents, Def. Sci. J., 2011, 61, 171-173.
  • [37] Kim K.D., Choi D.W., Choa Y.H., Kim H.T., Optimization of Parameters for the Synthesis of Zinc Oxide Nanoparticles by Taguchi Robust Design Method, Colloids Surf. A, 2007, 311(1-3), 170-173.
  • [38] Bazaki H., Kawabe S., Miya H., Synthesis and Sensitivity of Hexanitrohexaazaisowurtzitane (HNIW), Propellants Explos. Pyrotech., 1998, 23(6), 333-336.
  • [39] Elbeih A., Husarova A., Zeman S., Path to ε-HNIW with Reduced Impact Sensitivity, Cent. Eur. J. Energ. Mater., 2011, 8(3), 173-182.
  • [40] Bouma R.H.B., Von der Heijden A., Crystallization and Characterization of RDX, HMX, and CL-20, J. Crystal Growth & Design, 2004, 4(5), 999-107.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4c23adaf-5546-47e2-bec6-dabd925dea35
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.