PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Nozzle Clogging in Vacuum Induction Melting Gas Atomization: Influence of the Delivery-Tube and Nozzle Coupling

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Nozzle clogging seriously affects the continuity of spraying powder in vacuum induction melting gas atomization (VIGA) process and increases the consumption of gas and raw materials. However, there are few systematic studies on nozzle clogging. This paper reports the physics of nozzle clogging in gas atomization production. The influence of coupling-length of different melt delivery-tubes on nozzle clogging is studied numerically and experimentally. The interface tracking method of Volume of Fluid (VOF) and the large eddy simulation (LES) model are performed for visualizing the melt droplets flow traces in primary atomization and the associated simulation cloud images compared with experimental results. Four delivery-tube coupling-lengths (0 mm, 3 mm, 5 mm, and 7 mm) relative to nozzle position and two gas pressures (3 MPa and 4.5 MPa) are chosen for this study. The results indicated that the coupling-lengths of 0 mm and 3 mm increases the strength of the recirculation zone, the melt droplets backflow is obvious, and the nozzle is blocked. However, this phenomenon eliminated with increasing coupling-lengths, the atomization process is continuous, but the final fine powder yield decreases. This research is of guiding significance and reference for understanding the nozzle clogging of vacuum induction melting gas atomization (VIGA) technology.
Twórcy
autor
  • University of Science & Technology Beijing Institute of Special Ceramics and Powder Metallurgy, 30 Xueyuan Road, Haidian District, Beijing,100083, China
autor
  • University of Science & Technology Beijing Institute of Special Ceramics and Powder Metallurgy, 30 Xueyuan Road, Haidian District, Beijing,100083, China
autor
  • University of Science & Technology Beijing Institute of Special Ceramics and Powder Metallurgy, 30 Xueyuan Road, Haidian District, Beijing,100083, China
autor
  • University of Science & Technology Academician of CAS, Institute of Special Ceramics and Powder Metallurgy, Beijing, China
Bibliografia
  • [1] S. Motaman, A.M. Mullis, R.F. Cochrane, D.J. Borman, Numerical and experiment investigations of the effect of melt delivery nozzle design on the open-to closed-wake transition in closed-coupled gas atomization, Metall. Mater. Trans. B. 46, 1990-2004 (2015).
  • [2] D. Singh, S. Dangwal, Effects of process parameters on surface morphology of metal powders produced by free fall gas atomization, J. Mater. Sci. 41 (12), 3853-3860 (2006).
  • [3] R. Metz, C. Machado, M. Houabes, J. Pansiot, M. Elkhatib, R. Puyane, M. Hassanzadeh, Nitrogen spray atomization of molten tin metal: Powder morphology characteristics, J. Mater Process. Tech. 195 (3), 248-254 (2007).
  • [4] N. Zeoli, S. Gu, Computational simulation of metal droplet breakup, cooling and solidification during gas atomization, Comput. Mater. Sci. 43 (2), 268-278 (2008).
  • [5] J. Ting, I.E. Anderson, A computational fluid dynamics (CFD) investigation of the wake closure phenomenon, Mat. Sci. Eng. A. 379 (1), 264-276 (2004).
  • [6] S.P. Mates, G.S. Settles, A study of liquid metal atomization using close-coupled nozzles, part 2: atomization behavior, Atomization Spray 15 (1), (2005).
  • [7] O. Aydin, R. Unal, Experimental and numerical modeling of the gas atomization nozzle for gas flow behavior, Comput. Fluids 42 (1), 37-43 (2011).
  • [8] S. Feng, M. Xia, C.C. Ge, An EIGA driven coupled of electromagnetic-thermal field modeling in the induction melting process, Int. J. Mater. Form. 12 (4), 615-622 (2019).
  • [9] R.P. Guo, L. Xu, Y.P. Zhong, R. Yang, Characterization of Prealloyed Ti-6Al-4V Powders from EIGA and PREP Process and Mechanical Properties of HIP Powder Compacts, Acta. Metall. Sin-Engl. 30 (8), 735-744 (2017).
  • [10] M. Xia, P. Wang, X.H. Zhang, C.C. Ge, Computational fluid dynamic investigation of the and secondary atomization of the free-fall atomizer in electrode induction melting gas atomization process, Acta. Phys. Sin-Ch. Ed. 67 (2018)
  • [11] N. Hansen, X. Huang, Structural Refinement of Interstitial Free (IF) Steel by Deformation and Phase Transformation, Mater. Sci. Forum 475 (3), 7-42 (2005).
  • [12] Y. Bai, T. He, D. Guo, X.T. Liu, F.Y. Shao, Y.D. Liu, Texture evolution, formability and Ridging Resistance of a Sn-bearing ferritic Stainless Steel Under Different Hot Band Annealing Temperatures, Acta. Metall. Sin-Engl. 32 (11), 1362-1372 (2019).
  • [13] A. Montadhar, J.S. Alan, F. Masoumeh, C. Stephen, Estimation of the Temperature in the Stirred Zone and Cooling Rate of Friction Stir Welding of EH46 Steel from TiN Precipitates, Metall. Mater. Trans. A. 50 (11), 5103-5116 (2019).
  • [14] S.P. Mates, G.S. Settles, A study of liquid metal atomization using close-coupled nozzles, Part 1: Gas dynamic behavior, Atomization Spray 15 (1) (2005).
  • [15] I.E. Anderson, R.L. Terpstra, Progress toward gas atomization processing with increased uniformity and control, Mat. Sci. Eng. A. 326 (1), 101-109 (2002).
  • [16] T. Le, H. Henein, Effect of nozzle geometry and position on gas atomization, Int. J. Powder Metal. 32, 353-364 (1996).
  • [17] V. Srivastava, S. Ojha, Effect of aspiration and gas-melt configuration in close coupled nozzle on powder productivity, Powder Metall. 49 213-218 (2006).
  • [18] N. Zeoli, S. Gu, Computational validation of an isentropic plug nozzle design for gas atomization, Compute. Mater. Sci. 42 (2), 245-258 (2008).
  • [19] D. Schwenck, N. Ellendt, L. Mädler, Generation of small batch high quality metal powder, Powder Metall. 57, 171-175 (2014).
  • [20] S. Markus, U. Fritsching, K.M. Bauckhage, Mater. Sci. Engin. A. 326, 122 (2002).
  • [21] J. Ting, M.W. Peretti, W.B. Eisen, The effect of wake-closure phenomenon on gas atomization performance, Mat. Sci. Eng. A. 326 (1), 110-121 (2002).
  • [22] X.Q. Song, Y.X. Li, M. Han, Effect of liquid guide tube pressure on atomization efficiency and powder properties of Ni-based alloy, Powder Metall. 28 (1), (2018).
  • [23] S. Menon, P.K. Yeung, W.W. Kim, Effect of subgrid models on the computed interscale energy transfer in isotropic turbulence, Comput. Fluids 25, 165-180 (1996).
  • [24] S. Spitans, H. Franz, E. Baake, Numerical Modeling and Optimization of Electrode Induction Melting for Inert Gas Atomization (EIGA), Metall. Mater. Trans. B. 51 (5), 1918-1927 (2020).
  • [25] Anderson, R. Figliola, H. Morton, Flow mechanisms in high pressure gas atomization, Mater. Sci. Eng. A. 148, 101-114 (1991).
  • [26] H. Lubanska, Correlation of spray ring data for gas atomization of liquid metals, J. Met. 22, 45-49 (1970).
Uwagi
1. This research work was supported by Central University Basic Research Fund of China, FRF-GF-19-0058.
2. Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4c232fca-756f-4952-88f5-a150eaead4c4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.