Scientific Papers of
the Department of Electrical Power Engineering of
the Wroctaw University of Science and Technology

PRESENT
PROBLEMS

OF POWER
SYSTEM CONTROL

Wroctaw 2017



Guest Reviewers

lvan DUDURYCH
Tahir LAZIMOV
Murari M. SAHA

Editorial Board

Piotr PIERZ — art manager
Mirostaw t UKOWICZ, Jan IZYKOWSKI, Eugeniusz ROSOt OWSKI,
Janusz SZAFRAN, Waldemar REBIZANT, Daniel BEJIMERT

Cover design
Piotr PIERZ

Printed in the camera ready form

Department of Electrical Power Engineering

Wroctaw University of Science and Technology

Wybrzeze Wyspianskiego 27, 50-370 Wroctaw, Poland

phone: +48 71 320 35 41

www: http://www.weny.pwr.edu.pl/instytuty,52.dhtml; http://www.psc.pwr.edu.pl
e-mail: wydz.elektryczny@pwr.edu.pl

All right reserved. No part of this book may be reproduced by any means,
electronic, photocopying or otherwise, without the prior permission
in writing of the Publisher.

© Copyright by Oficyna Wydawnicza Politechniki Wroctawskiej, Wroctaw 2017

OFICYNA WYDAWNICZA POLITECHNIKI WROCLAWSKIEJ
Wybrzeze Wyspianskiego 27, 50-370 Wroctaw
http://www.oficyna.pwr.edu.pl

e-mail: oficwyd@pwr.edu.pl

zamawianie.ksiazek@pwr.edu.pl

ISSN 2084-2201

Print and binding: beta-druk, www.betadruk.pl



CONTENTS

. LUKOWICZ, S. CYGAN, Analysis of Synchrophasor Estimation Errors ............c.ccoceveieenienens
. KYRYCHENKO, M. HABRYCH, System of Signal Injection and Extraction for Protection
and Insulation Monitoring in Medium Voltage Networks .........ccccoceoivinininenninninenececne
G. WISNIEWSKI, Arc to Glow Transition for Using DC Low Power Switches in Low Voltage
ELECHITIC GIIAS oeeviiiiiiiicieeceee ettt sttt st

S. KATYARA, J. IZYKOWSKI, L. STASZEWSKI, F. SHAIKH, Technical and Economical
Evaluation of Proton Exchange Membrane (PEM) Fuel Cell for Commercial Applications ........
Szymon CYGAN, Mirostaw LUKOWICZ, PQ Control of Photovoltaic Power Station in Microgrid
OPETALION .uteuiiitetet ettt ettt ettt et e st e bt e b et e et e st e st eb e s e et e s e st eneemeebesse et et et eneeneenens

£E

23

31

41



synchrophasor estimation, dynamic phasor,
Fourier transform, Taylor—Fourier series,
phase-locked-loop, dynamic filter,

Mirostaw LUKOWICZ*
Szymon CYGAN*

ANALYSIS OF SYNCHROPHASOR
ESTIMATION ERRORS

This papers discusses the analytical analysis of the synchrophasor estimation employed in electri-
cal systems. Short time Fourier transform with the phase locked loop and Taylor Fourier series are
analyzed for signals relating to different states which may occur in real power systems. The object
is the accurate phasor estimation regardless of the shape of input signal, what for some signal types is
cumbersome.

As a result of active and reactive power disturbance in a power system, the frequency deviation
and amplitude fluctuations may appear in power system signals. As a consequences of short circuits
or overvoltages signal changes occur. This leads to unacceptable errors in short time Fourier trans-
form resulting from Fourier transform properties. This paper presents character of occurring errors
and their consequences individually for any signal deviation.

1. INTRODUCTION

An accurate estimation of electrical signal parameters is a vital issue in power sys-
tem control and protection. Unbalance between the power supply and the load can lead
to dynamic changes of the system state, thus voltage and current magnitudes, wave
shapes as well as the actual system frequency can vary from nominal values. The effi-
cient control of an electrical network requires more and more accurate information
about signal parameters. This include the accurate measure of the phase, the magni-
tude, the frequency, higher harmonics, Rate of Change of Frequency (ROCOF) and
the magnitude change rate. These parameters can be represented in the concise form as
a complex valued function referred to as a phasor.

* Wroctaw University of Science and Technology, Department of Electrical Power Engineering,
Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland, e-mail: miroslaw.lukowicz@pwr.edu.pl,
szymon.cygan@pwr.edu.pl
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According to synchrophasor standard C37.118.2011 [1], two base classes of esti-
mating algorithms have been defined: P (protection) and M (measurement) class. Both
classes are diversified by purpose of application, i.e. P class is designed for cooperation
with power system relays. These algorithms are designed to give quick responds to
changes in the input signal and to damp response overshoots. M class algorithms are
designed for accurate phasor estimation for all signals mentioned in the synhrophasor
standard. Requirements for the response time and the acceptable overshoot are milder.

Phasor estimation problem is a well studied issue. The fundamental technique of
phasor estimation is based on Short Time Fourier Transform (STFT) of an input signal.
STFT is an efficient and a potent way for phasor estimation as long as the frequency
of a measured signal does not differ from nominal 50 Hz and a signal amplitude is con-
stant. Occurrence of minor frequency changes yields to disturbance of the algorithm
response with the second harmonic and unacceptable estimation errors. The amplitude
of the second harmonic is proportional to the difference Af between the nominal fre-
quency 50 Hz and the actual frequency of the processed signal. The influence of sec-
ond harmonic distortion can be damped by using a well designed filter or extending
integration time in STFT. However, extension of the integration time leads to delay of
reporting, and the use of additional filters makes the dynamic more complex. Many
different techniques have been used for the proper design of STFT dedicated filters.
One approach is based on the expected filter characteristic [2], [3]. This technique
allows for adjusting filter properties according to requirements yet does not allow
reduction of errors for all expected conditions. The main advantage of windowed
STFT algorithms is a low computation cost and an easy implementation.

The vulnerability to frequency variations can be reduced by applying multilevel
STFT algorithms [4], as well as algorithms with adaptive filters [5]. In this method the
frequency estimate from the previous step is used for the following phasor estimation
using the new basis function. This approach increases the algorithm complexity and
the numerical burden, but allows obtaining similar estimation errors for full frequency
spectrum as for 50 Hz.

The approach based on Taylor phasor approximation has been studied in [6]—[8].
Evaluating of phasor using Least Squares Method (LSM) and approximating of phasor
with a polynomial reduce errors caused by the frequency distortion and the amplitude
fluctuation, however estimation errors still increase when the frequency distortion
rises. This problem can be damped by using the dynamically changing base function
in Taylor series based on the previous phasor analysis [9] or the initial STFT evalua-
tion [10]. However, this solution radically increases computational complexity. The
crucial issue for Taylor method is the proper adjustment of the polynomial approxi-
mation order of Taylor series. The increase of the polynomial order improves the
approximation precision and thereby the algorithm accuracy. However, it greatly in-
creases computational burden, requires special approaches to ensure numerical calcula-
tion, and leads to the vulnerability to the signal noises. The vulnerability to noises is



Analysis of Synchrophasor Estimation Errors 7

caused by improved capability to approximate noised function with polynomials of
higher orders.

2. PHASOR ANALYSIS

The dynamic phasor has been introduced in [1] as a concept for representation of
a complex input signal. Expressing a fast varying real signal as a slow varying com-
plex signal facilitates an analysis. The dynamic phasor is defined for special set of
functions such as

x(t)=X, (z)cos(zn j F()dt + (p) (1)

where X, denotes a varying amplitude of the input signal, ¢ stands for a constant
phase shift, f(#) designates a real time varying frequency of the signal, f; is equal to
fundamental frequency w = 2mf;. For each function (1) the dynamic phasor is formu-
lated as

2 [ (f (1)=fo de+ip

X=X, (e (2)

It can be easily seen that for each real valued signal, the corresponding phasor fulfills
following condition. The fundamental component of the input signal is the real part of
the rotating phasor

x(¢) = Re(X (¢)e'™") (3)
therefore the phasor is formulated as
X(@0)=X,0e"") “)

where /() is a real valued function which denotes the total instantaneous phase shift.

The definition of the dynamic phasor is correct yet incomplete. Therefore, the extra
assumption regarding the frequency has to be made to provide the more precise defi-
nition. The notation of function in (2) is not unique. Using trigonometric identities the
base sinusoidal signal can be expressed with many significantly different forms. Let us
consider the sample sinusoidal signal with the nominal frequency 50 Hz, and constant
both the amplitude and the phase shift as follows:

x(t) =sin(wt) ®)
Corresponding to [1] model phasor defined for model signal is of the form (6). Using

sample mathematical operations forms (7) and (8) can also be obtained as phasors
fulfilling required criteria.
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In fact, infinitely many different forms can express the sinusoidal signal just by
using trigonometric formulas. This inaccuracy is crucial problem for complete and
accurate phasor estimation as far as any input signal is concerned. The most important
issue in the phasor estimation is to define the phasor in such a way to get the unique
formula for any real valued function.

In C37.118.2011 the phasor uniqueness has been guaranteed by restricting possible
forms of the amplitude and the phase shift concerned as time functions, and dividing
model functions into the steady state and dynamic functions. The model of the phasor
for a steady state is defined as follows

x(t) = X, cos(w,t + @)+ X~ cos(kayt + ¢,)
, ©)
X=X,

The phasor amplitude X, is any positive constant whereas the phasor phase shift ¢
is a constant from the range [0, 27). The phasor angular speed w, is constant and it

does not differ from nominal frequency more than fixed value that depends on the
k

m?>

algorithm type. The harmonic distortion is described by harmonic amplitude X

which also depends on the algorithm employed. The phasor models for the dynamic
states have been defined as follows

X, 0)=X,(1+at)
X, (0 =X, (+ay,.1) (10)

X, () =X,(+axcos(w))
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where X,,(7) is a polynomial of order 1, or the step function, or the cosine wave. The
phase shift variability can be characterized with the polynomial of order 2, the step
function, or cosine function as follows

p(0)=yo(1+at +a®)
w(®) =y (l+ax (1) (11)
w(t) =y,(1+axcos(at))

The aforementioned definition under appropriate assumptions for a and , coefficients
provides unique representation for each function from standard test class, but does not
cover all periodic functions. There exist reasonable periodic functions which phasors
do not belong to the standard class.

Another problem coming with the phasor definition is a constricted reversibility.
Let us assume that there are two periodic real valued signals formulated as follows

xl (t) — Ava1 (t) Re(ela)l‘el(/)l(l))
| (12)
x2(t) — sz (t)Re(ela)lel(Pz(t))

which are close to each other in L? norm and RMS of their difference is close to zero.
The small RMS of the function difference does not imply small amplitude and phase
differences. Though functions x(¢) and x,(¢) are almost equal, their phasors can be
significantly different. Therefore, restricted function values lead to the numerically
ineffective reversibility.

3. PHASOR ESTIMATION

3.1. PROBLEM DEFINITION

The phasor estimation is a process of finding the corresponding phasor for input
signal, based on finite number of probes. For any input signal x(?) it is necessary to
find the amplitude X,(7) and the phase shift ¢(r) which are close to values of the
model. Every phasor estimation algorithm has three main parameters, which describe
algorithm efficiency, namely: the Total Vector Error (7VE), the Frequency Error (FE)
and the Rate of Change of Frequency Error (RFFE). TVE is defined as the relative dif-

ference between estimated phasor X (¢) and model phasor X(¢). TVE is an indicator

characterizing absolute difference between estimated and real phase shift as well as
between estimated and real amplitude.
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i |f((t) - X(t)|

13
X (13)

FFE is defined as a relative difference between the model frequency and its estimated
value.

FE - j_freal (14)
|freal|
RFE is defined in the analogous way as
e
RFE = (15)
dfreal
dt

Indices TVE, FE, RFE can be roughly interpreted as relative differences between
zero, first and second derivative of the complex valued function. The main goal for
each estimation algorithm is to keep TVE, FE and RFE as small as possible for all
functions in the model function set.

3.2. TEST SIGNAL

Algorithms presented in this paper have been analyzed for signals presented in the
model class set. All tests have been performed for boundary signals in the model set
class to exhibit estimation problems occurring for these signals. The test signal is pre-
sented in Fig. 1, in the form of the model phasor. The signal is composed of 34 differ-
ent model signals of the critical behavior. Model signals are numbered on x axis. The
first diagram shows input signal frequency, the second and third ones show the real
and imaginary parts of the model phasor. The model signal has been arranged as
follows:

-1 sinusoidal 50 Hz wave with amplitude of 1,

- 2,3 sinusoidal 48 Hz and 52 Hz waves with amplitude of 1,

— 4-9  sinusoidal 50 Hz waves with ramp of amplitude,

— 10-15 sinusoidal waves with ramp of frequency,

— 16-20 sinusoidal waves distorted with higher harmonics

— 21-24 sinusoidal waves with step changes of amplitude

— 25-28 phase step changes,

- 29 phase oscillation,

- 30 amplitude oscillation,

— 31-34 sinusoidal waves of frequency 45, 50, 55 Hz and amplitude 1.
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Fig. 1. Frequency, real part and imaginary part of testing phasor

4. FOURIER TRANSFORM BASED ALGORITHM

4.1. FOURIER ANALYSIS

Let us consider the set of test functions (1). According to Fourier series theory,
each periodic sufficiently smooth function x(¢) with the angular speed w can be repre-
sented as Fourier series formulated as follows

x(t) = iakei“’k’ (16)

==00

Fourier coefficients are obtained from
a, = ID x(0)e' " (17)

where D denotes a window length. Typically, D is equal to the integer number of
periods.

For functions with constant, amplitude, phase and the nominal frequency of 50 Hz,
normalized phasor can be expressed as first term in Fourier series a;, or its conjuga-
tion a_;. The fundamental idea for STFT is to extend phasor estimation as a; coeffi-



12 M. Lukowicz, S. CYGAN

cient for each function in the model function set. Unfortunately, applying Eq. (17) to
functions with varying amplitude or varying phase shift yields to high errors of phasor
estimation. Functions with an amplitude and a phase time dependent are no longer
periodic with frequency of 50 Hz in mathematical sense. Evaluated STFT for such
signal is distorted by higher harmonics. Harmonic distortion rate is proportional to the
amplitude and phase shift variability.

Fourier series algorithm can by significantly improved by modifying the window
function. The application of additional filters reduces the influence of higher harmonic
distortions. Formulas for the approximated phasor are as follows

Y0 =] 3 (@) gli-)dz (18)
2

where window function g(¢) determines the algorithm efficiency and also its static and
dynamic characteristics.

In pure STFT the window function g(¢) is continuously equal to 1/D, which implies
the gain less or equal to one. In C37.118 [1] two base filters have been proposed for P
and M class algorithms. Studying proper filter design is not a topic of this paper. For
further investigations the window filter will be selected as the 2 periods triangle func-
tion of the form

-
8&r = T
0. [>T

. =T

(19)

where filter window g;(7) is designed to neutralize disturbances during linear ampli-
tude changes. Furthermore, filter with g;(#) window function ensures perfect damping
of higher harmonics distortion in input signal.

In real systems STFT is performed for finite number of probes. Integrals in expres-
sions (17), (18), are substituted with finite sums. Fourier coefficients are calculated with
following formula

N
Zzl x(De 77 (20)

ak:
/

o=z

where f, is sampling frequency. N is selected with respect to  to keep integer val-

T
ues of Jr

. For algorithms with a window function the phasor is evaluated analo-

gously from
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N
m— k
2 io—1It
ym= 3 x(he " g, (1-m) @1
l=m—ﬁ 2

2

The crucial issue for substituting integrals with finite sums is preserving base proper-
ties of STFT. Simply, Fourier coefficients are constant for base frequency signals of
time independent amplitude and phase.

4.2. SIMULATION OUTCOMES

Results for TVE obtained on test signal are presented in Fig. 2. It can be observed
that for signals of 50 Hz frequency and the constant amplitude (signals 1, 4-10,
16-28, 31 33), phasor estimation errors are almost negligible on the level of 107 p.u.
Proper window design allows bypassing estimation errors for linear ramp of ampli-
tude (signals 4-10). Crucial errors occurs for signals with frequencies other than 50 Hz
(2, 3, 11, 14, 32, 34), for ramp of frequency (10, 12, 13, 15), frequency (29) and
amplitude (30) fluctuations. Errors occurring due to frequency deviation have two
primal components. First of all, the deviation from the base frequency increases the
amount of higher harmonics in output signal as a consequence of window length
mismatch. Secondly, the filter gain and the filter phase shift is not constant as is not
a frequency function in the neighborhood of the base frequency. The additional
compensating function which reacts against filter characteristic is required to miti-
gate these errors.

107 &
109 5
. I H
> 104E .
P10t

WOE L 1 L | 1
0 5 10 15 20 25 30 35

Signal number

Fig. 2. Simulation results for STFT algorithm with triangle window
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5. FOURIER TRANSFORM WITH PHASE LOCKED LOOP

5.1. CONTINOUS ANALYSIS

For static signals which frequencies differ from the base frequency, TVE increases
rapidly when |Af] goes up. The primary issue for phase locked up algorithms is to re-
duce errors occurring due to frequency disturbance by modifying the base frequency
in Fourier algorithm. STFT with the modified frequency used for phasor estimation
reduces the amount of higher harmonics without disrupting orthogonality relation. The
schema of the algorithm is shown in Fig. 3.

> [ x(t)ett >
yi(t)
Aw
9| Estimation Awg <
4
fx(t)ei(w—ﬂwo)t > aibuwot
> > ya(t)
x(t)
Aw; ) .
Estimation Aw; <
4
X(t)ei(w—AwUt elbw, t
> I y3(t)

Fig. 3. Scheme of phase locked loop algorithm
For input signal x(7), first phasor approximation y,(f) is evaluated using STFT.
N
t+—T .
=} x0egy (r-ndr (22)
-=r =
2 2

On the base of y;(7) the frequency difference between real and normalized frequency
can be evaluated by using the frequency estimation algorithm. This yields to first an-
gular speed approximation @ — Aw,. As noted above, the error rate depends on the
frequency disturbance, so evaluating STFT in base angular @ — Aw, reduces errors
caused by the frequency discrepancy. Evaluating STFT in new basis requires window
modification. The integration period needs to match a new angular speed. The new
phasor in base @ — Awy is evaluated with the following formula
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N
n0=["3" @ g, (e (23)
2T By,

2! 2!

where

1 21

= TA T o an, @9

The phasor evaluated with STFT of modified frequency is expressed in the base of
the periodic function with angular speed w — Aw,. The normalized phasor is defined in
the base of the periodic function with angular speed w. The adjustment is obtained by
rotating the second level estimation with difference frequency Aw,. Phasor y,(¢) ob-
tained with this method can be used to iteratively evaluate the new frequency differ-
ence and STFT in w — Aw, basis. Phasor y5(¢) is then calculated from

H'%TZ i(o-Aw))T
»0=[ 3 e gy (t-ndr (25)
=T h
where

1 2n
]’i: =
f-Afi o-Ao

(26)

In the mathematical model, where Fourier coefficients are obtained by integrating, the
sequence of iterated phasors converges to the model phasor.

5.2. DISCRETE ANALYSIS

Applications of the phase locked loop Fourier algorithm to a discrete signal suffers
from the crucial problem. Discrete STFT algorithms produce errorless results as long
as integration time is uniformly partitioned into probing time. To illustrate this prob-
lem let us consider the discrete input signal with the constant amplitude, the phase
shift equal to 0, and with angular speed o' which may differ from base angular speed
w. The proper phasor approximation is expected to be obtained, if angular speed o' is
known. It is necessary to know proper window length N to apply STFT with ', how-
ever the calculated window length may not match probing frequency, what means

2nf, . . . - -
N isn’t integer. This problem is illustrated in Fig. 4.
®

It follows that obtained Fourier coefficients are modified by mismatch error fi(£)
which strongly depends on the reciprocal relation between w and o'.
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m+— 1
2 ko' —

am=Y xe g, (U-m)+ f,(E)m) 27

2

l=m—ﬁ
2

Fig. 4. Mismatch error

The mismatch error is a time varying complex valued function, which depends also
on probe number m. The error can be negated by modification of window function g
with respect to w. This can be easy proven for a trivial window function used in pure
STFT algorithm, however for other window functions it is much more complicated.
Modifications can be performed locally, for single filter coefficient (28), or globally
for multiple coefficients (29). The application of global modifications increases com-
putational complexity but reduces vulnerability to external disturbances. It can be
shown that for triangle type filter g2, the mismatch error for the local compensation is
expressed by

Fo(EYm) =C(Dx(m=-De ' (28)
and for global compensation, with weighted function D(/)

2 lkw’L_I

N
FEYm) =Y Cx(m=De ' D) (29)

=

v =

where, - % <I< % , C(I) is a complex function of /.

New filter window g, can be obtained by modification of each /-th coefficient
with weighted function C(/) and the normalization process to keep the amplification
less or equal to one.

Results presented in this section have been obtained for the single modification of
middle filter value C(0). Function C(0)(w') is still dependent on frequency discrep-
ancy o'. Function C(0)(w") graph is presented in Fig. 5. When the frequency is equal
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to 50 Hz, the matching condition is fulfilled and no additional compensation is necessary,
i.e. compensation is equal to 0. The deviation from the base frequency increases the mis-
match error, and hence the degree of compensation. Function C is asymmetric about
50 Hz. This is so because the area of the mismatch field is a nonlinear frequency function.

0.012
0.01
0.008

0.006 -

G(o)(f)

0.004

0.002

45 46 47 48 49 50 51 52 53 54 55
1[Hz)

Fig. 5. Modification function for middle filter coefficient C(0)
5.3. SIMULATION RESULTS

Results obtained for Fourier phase locked loop algorithm are presented in Fig. 6.
TVE for three levels of STFT is submitted — blue line is for pure STFT algorithm, red

10 T : T T T T 3
E Signal delta - Y1 3
I Signal delta - Y2

107 ¢ Signal delta - Y3 —

ekl > % Maf"
I F

107 t ‘H 4

TVE
2 2
P
—

I 1 1 I
0 5 10 15 20 25 30 35
Signal number

Fig. 6. Simulation results for phase locked loop STFT with triangle window
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corresponds to STFT with one loop and yellow denotes a double loop. It can be ob-
served that for signals with frequency equal to 50 Hz and constant amplitude pha-
sors, TVE for all estimators is negligible. Minor differences between TVEs are fol-
lowed by the inaccuracy in filter compensation function. Major improvement was
obtained for signals with the constant frequencies differing from 50 Hz (2, 3, 11, 14,
32, 34). The first estimation (Y;) of the phasor is burdened with heavy errors. On the
basis of Y, the first frequency approximation was evaluated, which was closer to
real vale than base 50 Hz. This approach improves the second estimation (Y;) which
is about 10 times more precise than previous one. Evaluating third approach (¥3)
allows achieving the accuracy that is comparable with the accuracy for a signal with
the base frequency of 50 Hz. The further iterating lock loop process is groundless,
because frequency mismatch errors are dominated by errors deriving from the mag-
nitude and phase compensation inaccuracy. Estimation errors are preserved on the
negligible level for signals with harmonic distortion (16-20), caused by retaining the
orthogonality relation in multilevel STFT algorithm.

It can be observed that for signals with ramp of frequency (11, 12, 13, 15) as
well as for the frequency (29) and amplitude fluctuation (30), iterative phasor
evaluation does not efficiently improve the algorithm accuracy. For ramp of fre-
quency, TVE is kept on the level corresponding to ramps around 50 Hz for the full
frequency spectrum. For signals with parameter fluctuations all three phasors show
the same error level. This is because estimated signals are fluctuating near the fre-
quency of 50 Hz.

6. TAYLOR FOURIER SERIES ALGORITHM

6.1. TAYLOR SERIES EXPANSION

Taylor series expansion has been introduced to improve phasor estimation for am-
plitude and phasor estimation. Let us consider a function x(#) with corresponding
phasor X(¢). By phasor definition the following equation holds

X' + X (1)

x(1) = Re(X (2)e"") 5

(30)

where X(#) denotes conjugation. According to Weierstrass approximation theo-

rem, phasor X(7) can be approximated with N — order complex polynomial as fol-
lows
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N N
X(T)=Y ag* =AT =) b.p,(1)=BP()
k=0 k=0

A=(ay, a .. ay, ay)
B=(b, b .. by, by) G1)
T=1 ¢ .. "' V)

P(O)=(py() p() . pya(O py@)

where coefficients a; are complex numbers. By choosing the set of polynomials p(?), (31)

can be expressed as a sum of polynomials, where p,(¢) is a polynomial of order £.
The problem can be formulated as

ol | pp,—iot iot
(o)~ BPe™ + BPe™™™ l(B B) P(1)e . (32)
2 2 P(t)e—la)l‘
o . . P(r)e'" .
Multiplying both sides of (32) by transposition of P we obtain
t)e

! iot 1 _—iwt 1 n P(t)P'(t)eizwt P(t)P'(t)
P P ~—(B B 33
xX(D)(P'(1)e e )( PP P(t)l,,(t)e_,mJ (33)

In order to obtain the polynomial approximation of the phasor, matrix (B conj(B))
has to be evaluated. The matrix on the right hand side consists complex functions,
which columns are linearly dependent. It follows that the matrix is irreversible for any ¢.
To obtain the linear dependence it is sufficient to transform the matrix of functions

into the matrix of numbers, and to ensure the linear independence. The integration of
both sides of (33) Yields

’ 2ot ’
[ro®0e Pt E)J(P(t)P (Ve P(O)P'(1) J G34)

POP'(t)  P@P'(t)e >
The proper set of polynomials P simplifies the expression, giving

. IP(t)P/(t)eiZQ)l
B)

35
I j P()P'(1)e 2" ©5)

Jx(t)(PV(t)eiwt P/e—la)l) ~ %(B
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The multiplication of (35) by the inverse matrix gives

J'P(t)Pr(t)etlwt

36
I IP(t)Pr(t)e—IZ(ut )

1 £ ' iot 1 _—iot
(B B)zjx(t)(P(t)e Ple)

The dynamic phasor estimated integrating time domain is expressed as (31). The im-
mediate phasor value for time 7 = 0 is obtained as by, i.e. first element in matrix B.

6.2. SIMULATION RESULTS

Results obtained for Fourier Taylor series algorithm are depicted in Fig. 7. Analy-
sis has been performed for polynomials of order 2 (blue), 4 (red) and 6 (yellow). It can
be observed that for signals with the base frequency of 50 Hz and without higher har-
monic distortion (1, 4-9, 20-28, 31, 33), the best estimation accuracy is achieved for
any polynomial order, the same as for STFT algorithms. For signals with frequency
disturbances, liner frequency changes, as well as frequency and amplitude fluctuations
(2, 3, 10-15, 29, 30, 32, 34), increasing polynomial order improves the estimation
efficiency. For the signal with the higher harmonics content (16—19) the occurring
error is higher. It follows form both the property of LSM and the non-uniqueness of
the phasor. Each signal with higher harmonic distortion can be formulated as a dy-
namic phasor without higher harmonics but with varying amplitude and/or varying
phase shift. This phasor is approximated by a polynomial instead of being damped.
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Fig. 7. Simulation results for Taylor-Fourier series method
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Therefore, for the pure Taylor series algorithm the orthogonality relation no longer
holds. Orthogonality can be ensured by extending the function base with complex
functions with higher frequency P(r)e™”, for k> 1. The best suiting polynomial form
of the approximation is determined by the required algorithm accuracy, the acceptable
computational complexity, and the capability of inverse matrix evaluation.

7. CONCLUSION

This work has shown reasons of synchrophasor estimation errors in electrical
power systems. STFT and Fourier Taylor series based algorithms were studied to de-
termine their advantages and disadvantages as well as possibilities for further effi-
ciency improvement.

Investigations have revealed that algorithms based on STFT as well as phase locked
algorithms are efficient as long as amplitude and frequency of the processed signal are
constant. According to previous phasor analysis one signal can have many phasor repre-
sentations. It follows that the signal with varying amplitude and/or frequency, can be con-
sidered as different signals with the harmonic distortion. In consequence, important signal
parameters are being expressed as higher harmonics. As higher harmonics are damped by
applied filters, some signal information is lost in the phasor representation.

Efficiency of Taylor Fourier series based algorithms strongly depends on the poly-
nomial order adopted for the phasor approximation. Firstly, appropriate selection of
the polynomial order is strongly determined by accuracy requirements, restrictions on
the response overshoot and the capability of the harmonic distortion damping. Sec-
ondly, properties of the integration process in Taylor Fourier method need to be well
stated. By modifying the integrating function in LSM, dedicated properties can be
acquired. The estimation accuracy can be improved also by substituting polynomial
approximation by the nonlinear approximation and by modification of LSM, however
further research needs to be conducted.
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