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ABSTRACT: In this paper creating semantic maps based on laser terrestrial data is shown. Semantic 
map is based on transformed geometric data (3D laser range finder) into the data with assigned labels. 
This labels can help in several applications such as navigation of mobile robot by finding traversable 
and not traversable regions. Computation of large 3D data sets requires high computational power, 
therefore we proposed the GPU based (Graphic Processing Unit) implementation to decrease the 
computational time. As a result we demonstrate the computed semantic map for mobile robot 
navigation. 
 
1. INTRODUCTION AND RELATED WORK 

 
This work is related with 3D laser scanning, semantic mapping, data registration as an 

important part of 6DSLAM (6 Degrees of freedom Simultaneous Localization And 
Mapping), 3D data processing using parallel computation on modern GPUs and path 
planning, therefore the State of the Art will be described for the most important aspects. 
Using semantic information (Asada et al., 1989) extracted from 3D laser data (Nüchter et 
al., 2005) is a relatively recent research topic in mobile robotics. In (Nüchter et al., 2008) a 
semantic map for a mobile robot was described as a map that contains, in addition to spatial 
information about the environment, assignments of mapped features to entities of known 
classes. In (Grau, 1997) a model of an indoor scene is implemented as a semantic net. This 
approach is used in (Nüchter et al., 2003) where a robot extracts semantic information from 
3D models built from a laser scanner. In (Cantzler et al., 2002) the location of features is 
extracted by using a probabilistic technique (RANSAC: RANdom SAmple Consensus) 
(Fischler et al., 1980). It was shown in (Eich et al., 2010) that also the region growing 
approach, extended from (Vaskevicius et al., 2007) using k-nearest neighbor (KNN) search, 
is able to process unorganized point clouds. The improvement of plane extraction from 3D 
Data by fusing laser data and vision is shown in (Andreasson et al., 2005). 

Dealing with 3D cloud of points is related with 3D data registration problem which 
was introduced by Besl and McKay in (Besl et al., 1992), and from that moment on, many 
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researchers were trying to solve the problem of augmenting the accuracy and the 
performance of aligning two cloud of points. Based on the State of the Art, we can stated 
that the key issues of GPU based 3D data registration and important contributions are very 
close to the optimum, but not yet satisfactory. We deal with the problem of so-called 
approximated GPU ICP methods which affects different accuracy requirements than CPU-
based methods. The goal of the Iterative Closest Point algorithm is to find the 
transformation matrix that minimizes the sum of distances between the corresponding 
points in two different data sets, therefore two important aspects have to be solved: the 
nearest neighbor search (NNS) and choosing the proper optimization technique for the 
minimization of the mentioned function (estimation 3D rigid transformation). 

There are several GPGPU based approaches for the NNS in ICP (Iterative Closest 
Point) algorithm. An approach from (Bedkowski et al., 2012) is using the regular grid 
decomposition (Rozen et al., 2008), the another approach is using kd-tree (Qiu et al., 2009). 
The NNS procedure is dominant compared to the rest of ICP algorithm, therefore many of 
researchers are trying to optimize the time of its execution. Another promising approach - 
an octree based NNS is shown in (Elseberg et al., 2011). Authors claim that the octree 
based NNS does not suffer considerably more from larger maximal distances than the k-d 
tree based NNS, unfortunately there is observed an increased variance for the computing 
time. Nearest Neighborhood Search problem is well known also in Computer Graphics, 
where point-model (often referred to as a point-cloud) usually contain millions of points. 
For example authors of (Sankaranarayanan et al., 2006) claim that their NNS approach can 
be used for the surface normals computation, mollification and noise removal. Using NNS 
for normal vector estimation is also shown in (Park et al., 2006), where authors use Elliptic 
Gabriel Graph (EGG) for finding neighbors. EGG provides balanced neighbors by 
considering both distance and directional spread. It is emphasized the fact that in recent 
years there has been a marked shift from using triangles to using points as object modeling 
primitives especially in computer graphics applications (Pauly et al., 2003). It is related 
with improved scanning technologies (Zampa et al., 2009), that have also meaningful 
impact into mobile robotic applications. An important contribution to NNS problem is so-
called KD-Tree data decomposition. It is already shown that GPU is more efficient than 
CPU in NNS problem, for example in (Garcia et al., 2008) authors claim that kNN GPU is 
up to 400 times faster than a brute force CPUbased implementation of NNS. The 
comparison of nearest neighbor search strategies and implementations for efficient shape 
registration is shown in (Elseberg et al., 2012). Authors emphasized the fact that most 
spatial data structures are hierarchical in nature, such as k-d trees (Bentley, 1975) and 
octrees (Meagher, 1982). They mentioned that a special type of NNS employs the Morton 
order (a space-filling curve (SFC)) for arranging the point cloud (Connor et al., 2009). They 
also discussed the R-tree based algorithm for nearest neighborhood search. The result of 
this comparison is that since most libraries implement only the k-d tree, it is hard to draw 
final conclusions as to what data structure is better suited for NNS. The octree 
implementation was amongst the best performing algorithms. Authors claim that they have 
contributed their own novel open-source implementation of NNS and have shown these to 
perform well on realistic as well as artificial shape registration problems. Choosing the 
proper optimization technique in ICP like algorithms has been a research topic during last 
decades. A comparison of four algorithms for estimating 3D rigid transformation is shown 
in (Lorusso et al., 1995). First algorithm proposed in (Arun et al., 1987) is using Singular 
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Value Decomposition(SVD) for derive matrix. Second approach based on orthonormal 
matrices and computation of eigensystem of derived matrix is proposed in (Horn et al., 
1988). The third algorithm is shown in (Horn, 1987), it finds the transformation for the ICP 
algorithm by using unit quaternions. The forth algorithm shown in (Walker et al., 1991) is 
using so-called dual quaternions. Instead of these four closed-form solution methods a 
novel linear solutions to the scan registration problem is shown in (Nüchter et al., 2010). 
The advantage of these new linear solutions is that they can be extended straightforward to 
n-scan registrations. It was stated that under the assumption that the transformation (R,t) 
that has to be calculated by the ICP algorithm is small, it can be approximated the solution 
by applying instantaneous kinematics. This solution was initially given in (Pottmann et al., 
2002; Hofer et al., 2003). The reported experiments have shown that the helix transform 
performs qualitatively as good as the uncertainty-based algorithm using Euler angles. 

 
Fig. 1. GPGPU based robot control architecture. 

It is important to mention some alternative methods for 3D data registration. 
Registration without ICP is shown in (Pottmann et al., 2004). A competitive approach to 
ICP - Normal Distribution Transform is described in (Magnusson et al., 2005). Multi-Scan 
alignment method based on the knowledge of partial correspondences is shown in (Teniente 
et al., 2011). Instead of point to point scan matching there are another registration 
approaches such as point-to-plane (Teniente et al., 2011). Furthermore, point-to-projection 
metrics are also possible (Blais et al., 1995), it is done by matching points to ray indexes 
directly, inverting the ray casting process. The properties of these metrics are given in (Park 
S.Y., Su, 2003). It is important to emphasize the fact that point-to-plane method is faster 
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than point-to-point, but not always more accurate. The accuracy of point-to-plane like 
methods strongly depends on the surface approximation by local planes. 

Complete 6DLSAM was analyzed in (Wulf et al., 2008) and presented in (Sprickerhof 
et al., 2009). Authors claim that to digitalize environments without occlusions, multiple 3D 
scans have to be registered. They discussed iterative ICP data registration (pairwise ICP) 
and so-called metascan technique. Both pairwise ICP and metascan ICP correct the robot 
pose estimates, but it is important to take into account that registration errors sum up. 
6DSLAM algorithm uses the loop closing technique to bound these errors. Loop closing 
technique finds matchable scans, it appears when their Euclidean distance falls below a 
threshold (for example 5m), therefore these scans suppose to overlap. Local maps and robot 
poses are organized into a graph where edges correspond to each ICP registration. Once 
loop is detected, a 6-DoF graph optimization algorithm (Lu et al., 1997) for global 
relaxation is employed. The result is globally consistent 3D map represented as a graph, 
where nodes are related with local 3D dense maps, edges are related with ICP registration 
modified if necessary by LUM. Similar approach can be found in (Pfaff et al., 2007) where 
authors presented an approach to solve the SLAM problem with elevation maps generated 
also from three-dimensional range data acquired with a mobile robot. Their approach 
especially addresses the problem of acquiring such maps also with a ground-based vehicle. 
The approach classifies the individual cells of elevation maps into four classes representing 
parts of the terrain seen from above, vertical objects, overhanging objects such as branches 
of trees or bridges, and traversable areas. Authors claim that they extend of the ICP 
algorithm that takes this classification into account when computing the registration. 
Finally they claim that the consideration of the individual classes during the data 
association in the ICP algorithm provides more robust correspondences and more accurate 
alignments than classical approach. 

In this paper we are focused on the semantic map obtained by the classification into 
several classes. This classes are used for robot navigation purpose.  

2. ROBOT CONTROL ARCHITECTURE 

GPU based robot control architecture is designed for 3D cloud processing during 
robot’s motion. The architecture is shown on figure 1. There is constant interval of time 
between observations derived from 3D laser measurement unit. This time can be efficiently 
used for: transferring data from host (CPU) to device(GPU), data registration, semantic 
objects identification, path planning, computation of qualitative decision concerning 
navigation, transferring data(qualitative decision) from device to host. 

3. SEMANTIC APPROACH FOR ROBOT PATH PLANNING 

Semantic map is defined as a set of 3D points with assigned label. This map extends 
metric map with additional information (label), therefore we cope with four dimensional 
space x,y,z,label. This type of information can be used for traversability analysis and then 
for path planning. Motion planning is very important task for mobile robot working in 
unknown environment. Assuming that we have grid map describing robot environment, a 
trajectory of the robot can be computed using the modification of diffusion method 
described in (Siemiatkowska, 2008) improved by GPGPU computation. GPGPU 
implementation is using two dimensional grids of 512x512 cells. One grid is used for 
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initiation, where each cell can be free, occupied by the obstacle, occupied by a robot or 
occupied by a goal. Second grid is used for diffusion computation. The idea of usage 
GPGPU is to perform computation for each cell in parallel till diffusion reach robot 
position. To obtain robot trajectory we start from robot position and iteratively by finding 
local maximum in neighboring cells we are approaching the goal. 

The idea of using semantics is to project 3D semantic map onto 2D grid. Algorithm 1 
shows complete algorithm that results a path for given 3D cloud of points. First 3D cloud of 
points has to be registered. In the second step we compute normal vectors for each 3D data 
point using PCA/SVD (Principal Component Analysis/Singular Value Decomposition) 
method. We classify 3D points to assign semantic labels. For INDOOR we defined two 
classes flat region, not flat region, for OUTDOOR we defined four classes terrain, building, 
vegetation, unclassified. Traversability analysis is performed for each labeled 3D point that 
is projected onto grid, where white color corresponds to traversable region and black color 
corresponds to not traversable region. The trajectory is compute based on GPGPU 
implementation of the modified diffusion method. 

Algorithm 1 Find path 
 registration of 3D data 
 computation of normal vectors 
 classification of 3D points 
 traversability analysis 
 path planning 
 

1) Classification of 3D points in INDOOR environment: System classifies each point 
into one of two classes: flat region, not flat region. In first step vectors are computed, in 
second step we the condition of acceptable distance between points and approximation 
planes is checked. All points that violates this condition are marked as not flat region. This 
two classes enough to find traversable regions in indoor environment. 

2) Classification of 3D points in OUTDOOR environment: System classifies each 
point into one of four classes: ground, building, vegetation, unclassified. The basis for the 
classification are vectors distributions. Next step finds the most populous horizontal plain, 
below the central point of the scan. We use RANSAC to find the exact parameters of the 
plain. After that each point which distance to the found plain is lower then a threshold is 
classified as ground. Classified points are then filtered out of the data 3D point cloud and 
are not used in the next steps. For the remaining points grouping into cells of 2x2 meters, in 
the horizontal plane is done. The groups are then preclassified based on these assumptions: 
buildings are mostly regular plains, trees and bushes are mostly irregular group of points. 
Therefore a cell in which most points are vegetation points should have a roughly uniform 
distribution of directions of normal vectors of the points, while cell that holds mostly 
building walls points should have most normal vectors pointing in one direction. Based on 
such reasoning the cells are classified in two groups: potential building or potential 
vegetation. The cell is considered potential building if normal vectors of at least half of the 
points in the cell are pointing in the same direction. For such cell RANSAC algorithm is 
used to find a plane from which at least half of the points in the cell lie in a certain 
threshold distance. If such a plain can be found the cell is classified as building. Each cell 
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that does not met this condition is added to the group of potential vegetation. Vegetation 
hypothesis is checked by finding the dominant direction of normal vectors of each point in 
the cell. If the distribution of normal vectors directions for each point in the cell is roughly 
uniform the cell is considered vegetation. The cells that do not meet both conditions are 
classified as unclassified. After initial classification every cell is checked, by comparing it 
with it’s neighbors. The label is changed if it has a high chance of being an anomaly (a 
vegetation cell surrounded by building cells). Traversability is taken from the predefined 
properties of the classes. Buildings and vegetation are not traversable, while ground is 
traversable. For unclassified points the pessimistic version is chosen and they are 
considered not traversable. 

Fig. 2. Indoor; Registered 3D cloud of points. Fig. 3. Indoor: Reduced 3D cloud of points from 
figure 2 by 3D points above given threshold 

corresponding to the robot height. 

4. EXPERIMENTS 

Following set of figures demonstrate the result of proposed semantic approach for 
mobile robot path planning in indoor and outdoor environments. The goal was to register 
3D clouds of points derived from different data source. In indoor data were gathered by 
mobile robot equipped with rotated SICK laser LMS100, in outdoor data were collected 
using Z+F IMAGER 5010 3D laser measurement system. The limitation is 64 millions of 
3D points for data processing. Indoor environment is approximately 40m x 10m (2 millions 
of points), outdoor environment is approximately 200m x 200m (15 million of points). The 
computational time for each algorithm is considered as on-line, therefore it can be used by 
mobile robot executing task on the field with the assumption that it is equipped with 
NVIDIA GPGPU with compute capability 3.0.  

5. CONCLUSIONS 

Results can be summarized as follows: parallel computing drastically improves 3D cloud of 
points processing, semantic map can be used efficiently for mobile robot’s path planning in 
indoor and outdoor environments, semantic mapping approach can be efficiently integrated 
with state of the art path planner such as based on wave propagation, we can process up to 
64 million of 3D points in parallel in single step using modern GPGPU, proposed approach 
can be integrated with on-board computer of mobile robot. Proposed approach can be 
improved by extending set of classes. Semantic map is crucial for traversable analysis what 
extends the State of the Art path planning. Presented implementation can efficiently solve 
the problem of path planning for indoor and outdoor environments. 
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Fig. 4. Indoor: Semantic map as the result of 

classification of 3D points into two classes: green 
- flat, red - not flat 

 
Fig. 5. Indoor: The result of traversability 

analysis. Green points are projected as 
traversable (white pixels), red as not traversable 

(black pixels). 
 

 
Fig. 6. Indoor: The result of path planning using 

wave propagation method. 
 

Fig. 7. Outdoor: Registered 3D cloud of points. 

 

Fig. 8. Outdoor: Semantic map as a result of 
classification of 3D points into four classes: 
ground-green, building-red, vegetation-blue, 

unclassified-gray. 

Fig. 9. Outdoor: The result of traversability 
analysis based on semantic map from figure 8. 
Green-traversable regions, red - not traversable 

regions. 
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Fig. 10. Outdoor: Grid map of with traversable 

cells (white), and not traversable (black) a result 
of a projection of traversable/not traversable 

regions onto rectangle flat area. 

 
Fig. 11. Outdoor: The result of path planning 

using wave propagation method. 
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TWORZENIE MAP SEMANTYCZNYCH NA PODSTAWIE DANYCH Z 
NAZIEMNEGO SKANINGU LASEROWEGO 

 
SŁOWA KLUCZOWE: mapy semantyczne, skaning naziemny, nawigacja robota mobilnego, 
planowanie trasy, obliczenia równoległe 
 

Streszczenie 
 
W niniejszej pracy zostało przedstawione tworzenie map semantycznych na podstawie danych z 
naziemnego skaningu laserowego. Mapa semantyczna bazuje na danych pomiarowych z 
przypisanymi etykietami. Te etykiety mogą zostać wykorzystane w wielu aplikacjach, jak nawigacja 
robota mobilnego z wykorzystaniem podziału na regiony przejezdne i nieprzejezdne. Obliczenia 
dużych trójwymiarowych zbiorów danych wymaga zastosowania duże mocy obliczeniowej, dlatego 
zaproponowaliśmy implementację wykorzystującą GPU (Graphic Processing Unit), by zmniejszyć 
czas obliczeń. W rezultacie prezentujemy mapę semantyczną do nawigacji robota mobilnego. 
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