PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Optoelectronic pressure dependent study of MgZrO₃ oxide and ground state thermoelectric response using Ab-initio calculations

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The electronic, optical and thermoelectric properties of zirconia-based MgZrO₃ oxide have been studied theoretically at a variant pressure up to 25 GPa. Calculations for the formation energy and tolerance factor reveal the thermodynamic and structural stability of MgZrO₃. To tune the indirect band gap from to a direct band gap, the optimized structure of MgZrO₃ has been subjected to external pressure up to 25 GPa. The optical properties have been discussed in the form of dielectric constant and refraction that brief us about the dispersion, polarization, absorption, and transparency of the MgZrO₃. In the end, the thermoelectric parameters have been analyzed at variant pressure against the chemical potential and temperature. The narrow band gap and high absorption in the ultraviolet region increase the demand of the studied oxide for energy harvesting device applications.
Twórcy
  • Center for High Energy Physics, University of the Punjab, Lahore, 54000, Pakistan
  • COMSATS University Islamabad, 44000, Pakistan
  • Institute of Physics, GC University, Lahore, 54000, Pakistan
  • Advanced Functional Materials & Optoelectronics Laboratory (AFMOL), Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, Saudi Arabia
  • Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 61413, P.O. Box 9004, Saudi Arabia
autor
  • Department of electrical engineering, University of Punjab, Lahore, 54000, Pakistan
autor
  • Department of Physics and Astronomy, College of Science, King Saud University, Riyadh, 11451, King, Saudi Arabia
Bibliografia
  • [1] D. Kuzum, S. Yu, H.-S. Philip Wong, Synaptic electronics: materials, devices and applications, Nanotechnology 24 (2013), 382001.
  • [2] H. Przybylinska, ´ G. Springholz, R.T. Lechner, M. Hassan, M. Wegscheider, W. Jantsch, G. Bauer, Magnetic-Field-Induced Ferroelectric Polarization Reversal in the Multiferroic Ge1−xMnxTe Semiconductor, Phys. Rev. Lett. 112 (4) (2014), 047202.
  • [3] R.T. Lechner, G. Springholz, M. Hassan, H. Groiss, R. Kirchschlager, J. Stangl, N. Hrauda, G. Bauer, Phase separation and exchange biasing in the ferromagnetic IV-VI semiconductor Ge1−xMnxTe, Appl. Phys. Lett. 97 (2010), 023101.
  • [4] M. Hassan, G. Springholz, R.T. Lechner, H. Groiss, R. Kirchschlager, G. Bauer, Molecular beam epitaxy of single phase GeMnTe with high ferromagnetic transition temperature, J. Cry. Growth 323 (1) (2011) 363–367.
  • [5] S. Jiang, Y. Fang, R. Li, H. Xiao, J. Crowley, C. Wang, T.J. White, W.A. Goddard III, Z. Wang, T. Baikie, J. Fang, Pressure-Dependent Polymorphism and Band-Gap Tuning of Methylammonium Lead Iodide Perovskite, Angew. Chem. Int. Ed. 55 (2016) 6540.
  • [6] N.A. Noor, M. Hassan, M. Rashid, S.M. Alay-e-Abbas, A. Laref, Systematic study of elastic, electronic, optical and thermoelectric properties of cubic BiBO3 and BiAlO3 compounds at different pressure by using abinitio calculations, Materials Research Bulletin 9 (2018) 436–443.
  • [7] H.T. Hauge, M.A. Verheijen, S. Conesa-Boj, T. Etzelstorfer, M. Watzinger, D. Kriegner, I. Zardo, C. Fasolato, F. Capitani, P. Postorino, S. Kölling, A. Li, S. Assali, J. Stangl, E.P.A.M. Bakkers, Hexagonal silicon realized, Nano Lett. 15 (2015) 5855.
  • [8] J.S. Williams, B. Haberl, S. Deshmukh, B.C. Johnson, B.D. Malone, M.L. Cohen, J.E. Brad, Hexagonal germanium formed via a pressure-induced phase transformation of amorphous germanium under controlled nanoindentation, Phys. Status Solidi RRL 7 (2013) 355.
  • [9] P. Bogustawski, Stability of epitaxial Ga0.5In0.5P ordered alloys: effects of dimensionality, Semi. Sci. Technol. 6 (1991) 953.
  • [10] A.S¸ . Demirkıran, E. Avcı, Evaluation of functionally gradient coatings produced by plasma-spray technique, Surface and Coatings Technology 116–119 (1999) 292–295.
  • [11] A. Kawashima, K. Matsubara, K. Honda, Development of heterogeneous base catalysts for biodiesel production, Bioresource Technology 99 (2008) 3439–3443.
  • [12] Y. Zhang, L. Li, W. Bai, B. Shen, J. Zhai, B. Li, Effect of CaZrO 3 on phase structure and electrical properties of KNN-based lead-free ceramics, RSC Adv. 5 (2015) 19647–19651.
  • [13] B.J. Kennedy, C.J. Howard, B.C. Chakooumakos, High-temperature phase transitions in SrZrO3, Phys. Rev. B 59 (1999) 4023.
  • [14] S. Yamanaka, H. Fujikane, T. Hamaguchi, H. Muta, T. Oyama, T. Matsuda, S. Kobayashi, K. Kurosaki, Thermophysical properties of BaZrO3 and BaCeO3, J. Alloys Compd. 359 (2003) 109.
  • [15] P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, J. Luitz, WIEN2K, An augmented plane wave + local orbitals program for calculating crystal properties, Karlheinz Schwarz, Techn. Universitat¨ Wien, Austria), 2001.
  • [16] Walter Kohn, Lu Jeu Sham, Self-Consistent Equations Including Exchange and Correlation Effects, Physical Review. 140 (1965) A1133–A1138.
  • [17] J.P. Perdew, A. Ruzsinszky, G.I. Csonka, O.A. Vydrov, G.E. Scuseria, L.A. Constantin, X. Zhou, K. Burke, Restoring the density-gradient expansion for exchange in solids and surfaces, Phys. Rev. Lett. 100 (2008), 136406.
  • [18] H.J. Monkhorst, J.D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B 13 (1976) 5188.
  • [19] G.K.H. Madsen, D.J. Singh, TraP Boltz, A code for calculating band-structure dependent quantities, Comp. Phys. Comm. 175 (2006) 67.
  • [20] Masood Yousaf, F. Inam, R. Khenata, G. Murtazad, A.R.M. Isa, M.A. Saeed, Prediction study of structural, electronic and optical properties of XIn2S4 (X = Hg, Zn) thiospinels under pressure effect, J. Alloys Compnds 589 (2014) 353–363.
  • [21] B. Sabir, G. Murtaza, Q. Mahmood, R. Ahmad, K.C. Bhamu, First principles investigations of electronics, magnetic, and thermoelectric properties of rare earth based PrYO3 (Y=Cr, V) perovskites, Current Appl. Phys. 17 (2017) 1539–1546.
  • [22] J. Young, J.M. Rondinelli, Octahedral Rotation Preferences in Perovskite Iodides and Bromides, Phys. Chem. Lett. 7 (2016) 918–922.
  • [23] W. Tanveer, M.A. Faridi, N.A. Noor, A. Mahmood, B. Amin, First-principles investigation of structural, elastic, electronic and magnetic properties of Be0. 75Co0. 25Y (Y=S, Se and Te) compounds, Current Appl. Phys. 15 (2015) 1324.
  • [24] N.A. Noor, S. Ali, G. Murtaza, M. Sajjad, S.M. Alay-e-Abbas, A. Shaukat, Z.A. Alahmed, A.H. Reshak, Theoretical investigation of band gap and optical properties of ZnO1− xTex alloys (x= 0, 0.25, 0.5, 0.75 and 1), Comp. Mat. Sci. 93 (2014) 151.
  • [25] D. Moghe, L. Wang, C.J. Traverse, A. Redoute, M. Sponsellerb, P.R. Brown, V. Bulovic, R. Lunt, All vapor-deposited lead-free doped CsSnBr3 planar solar cells, Nano Energy 28 (2016) 469–474.
  • [26] S. Gupta, T. Bendikov, G. Hodes, D. Cahen, CsSnBr3, A Lead-Free Halide Perovskite for Long-Term Solar Cell Application: Insights on SnF2 Addition, ACS Energy Lett. 1 (2016) 1028–1033.
  • [27] M. Rashid, N.A. Noor, B. Sabir, S. Ali, M. Sajjad, Ab-initio study of fundamental properties of ternary ZnO1− xSx alloys by using special quasi-random structures, Comp. Mater. Sci. 91 (2014) 285–291.
  • [28] L.C. Tang, Y.C. Chang, J.Y. Huang, C.S. Chang, Ab initio calculated frequency-dependent nonlinear optical properties on CsGeBr3, Proc. of Society of Photo-Optical Instrumentation EngineersSPIE 6294 (2006).
  • [29] D.R. Penn, Wave-number-dependent dielectric function of semiconductors, Phys. Rev. 128 (1962) 2093.
  • [30] M. Hassan, A. Shahid, Q. Mahmood, Structural, electronic, optical and thermoelectric investigations of antiperovskites A3SnO (A = Ca, Sr, Ba) using density functional theory, Solid State Communications 270 (2018) 92–98.
  • [31] M. Hassan, I. Arshad, Q. Mahmood, Computational study of electronic, optical and thermoelectric properties of X3PbO (X= Ca, Sr, Ba) anti-perovskites, Semicond. Sci. Technol. 32 (2017) 115002.
  • [32] M. Ullah, G. Murtazaa, Shahid M. Ramay, Asif Mahmood, Structural, electronic, optical and thermoelectric properties of Mg3X2 (X= N, P, As, Sb, Bi) compounds, Materials Research Bulletin 91 (2017) 22–30.
  • [33] K.G. Prasad, Manish K. Niranjan, S. Asthana, Electronic structure, vibrational and thermoelectric properties of AgTaO3: A first-principles study, J. Alloys. Comp. 696 (2017) 1168–1173.
  • [34] M. Bilal, M. Shafiq Saifullah, B. Khan, H.A.R. Aliabad, S.J. Asadabadi, R. Ahmed, I. Ahmad, Antiperovskite compounds SbNSr3 and BiNSr3: Potential candidates for thermoelectric renewable energy generators, Phys. Lett. A 379 (2015) 206–210.
  • [35] Z. Mousavi, M.E. Zare, M.S. Niasari, Magnetic and optical properties of zinc chromite nanostructures prepared by microwave method, Trans. Nonferrous Met. Soc. China 25 (2015) 3980–3986.
  • [36] H. Kim, B. Anasori, Y. Gogotsi, H.N. Alshareef, Thermoelectric Properties of Two-Dimensional Molybdenum-based MXenes, Chem. Mater. 29 (2017) 6472–6479.
  • [37] L. Yu, W. Kassem, R. Bude, L. Divay, J. Amrit, S. Volz, Thermoelectric property analysis of CsSnX3 materials (X = I, Br, Cl), IEEE Xplore (2016), http://dx.doi. org/10.1109/THERMINIC.2015.7389628.
  • [38] H.A.R. Aliabad, M. Ghazanfari, I. Ahmad, M.A. Saeed, Ab initio calculations of structural, optical and thermoelectric properties for CoSb3 and ACo4Sb12 (A= La, Tl and Y) compounds, Comp. Mater. Sci. 65 (2012) 509–519.
  • [39] B. Amin, F. Majid, M.B. Saddique, B.U. Haq, A. Laref, Physical properties of half-metallic AMnO3 (A= Mg, Ca) oxides via ab initio calculations, Comp. Mater. Sci. 146 (2018) 248–254.
  • [40] S.A. Khandy, D.C. Gupta, Structural, elastic and thermo-electronic properties of paramagnetic perovskite PbTaO3, RSC Adv. 6 (2016) 48009.
  • [41] J.E. Saal, S. Kirklin, M. Aykol, B. Meredig, C. Wolverton, Materials design and discovery with high-throughput density functional theory: the open quantum materials database (OQMD), JOM 65 (2013) 1501.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4c1232d0-6ee7-4a02-8b99-43066d23070f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.