PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Adsorbenty ze związanymi cieczami jonowymi i ich wykorzystanie w przygotowaniu próbek oligonukleotydów

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Adsorbents with bonded ionic liquids and their use in the preparation of oligonucleotides samples
Języki publikacji
PL
Abstrakty
EN
Oligonucleotides are short fragments of nucleic acids. They have a growing potential in medicine, especially as diagnostic and therapeutic agents. In most cases, these compounds are determined in the complex biological matrix. Thus, the sample preparation step is very important in their bioanalysis. Solid-phase extraction is a predominant technique in this field. However, presently used for this purpose adsorbents have disadvantages. They ensure low extraction effectiveness and procedures using them are labor-intensive or time-consuming. Ionic liquids, since their discovery, are objects of intensive interest of scientists. Their scientific attractiveness is connected with their unique properties. They are used in separation and sample preparation techniques, such as liquid-liquid extraction using water-immiscible ionic liquids. This approach was also used in the extraction of oligonucleotides. Adsorbents modified with ionic-liquids have growing potential in extraction techniques. Few types of materials are used, namely carbon, polymers, and silica. A common feature of these materials modified with ionic liquids is the ion exchange character. Nonetheless, carbon nanomaterials are coated or covalently modified with ionic liquids, and they are used mainly for nonpolar compounds. Polymer and silica-based adsorbents are used mainly for acidic compounds. Polymers are characterized by the highest stability of the presented materials. Due to their ion-exchange properties crosslinked poly(ionic liquids) were used also for extraction of unmodified and modified oligonucleotides. The optimized procedure applying the material with bonded zwitterion ionic liquid gives high recoveries. It is concurrent for presently used adsorbents, thus solves problems connected with their usage. Moreover, it can be used for biological samples without any pre-purification.
Rocznik
Strony
545--565
Opis fizyczny
Bibliogr. 71 poz., schem.
Twórcy
  • Katedra Chemii Środowiska i Bioanalityki, Wydział Chemii Uniwersytet Mikołaja Kopernika w Toruniu ul. Gagarina 7, 87-100 Toruń
  • Katedra Chemii Środowiska i Bioanalityki, Wydział Chemii Uniwersytet Mikołaja Kopernika w Toruniu ul. Gagarina 7, 87-100 Toruń
  • Katedra Chemii Środowiska i Bioanalityki, Wydział Chemii Uniwersytet Mikołaja Kopernika w Toruniu ul. Gagarina 7, 87-100 Toruń
Bibliografia
  • [1] J. Wang, J. Chen, S. Sen, J. Cell. Physiol., 2016, 231, 25.
  • [2] C.A. Stein, D. Castanotto, Mol. Ther., 2017, 25, 1069.
  • [3] A.C. McGinnis, B. Chen, M.G. Bartlett, J. Chromatogr. B, 2012, 883-884, 76.
  • [4] Ł. Nuckowski, A. Kaczmarkiewicz, S. Studzińska, J. Chromatogr. B, 2018, 1090, 90.
  • [5] D.R. MacFarlane, M. Kar, J.M. Pringle, Fundamentals of Ionic Liquids, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2017.
  • [6] J. Liu, G. Jiang, J. Liu, J.Á. Jönsson, TrAC Trends Anal. Chem., 2005, 24, 20.
  • [7] N. Fontanals, F. Borrull, R.M. Marce, TrAC Trends Anal. Chem., 2012, 41, 15.
  • [8] V.W. Rodwell, D.A. Bender, K.M. Botham, P.J. Kennelly, P.A. Weil, Biochemia Harpera Ilustrowana, PZWL Wydawnictwo Lekarskie, Warszawa, 2018.
  • [9] Z.J. Lin, W. Li, G. Dai, J. Pharm. Biomed. Anal., 2007, 44, 330.
  • [10] E. Urban, C.R. Noe, Farmaco., 2003, 58, 243.
  • [11] J. Goodchild (edytor), Methods in Molecular Biology (Methods and Protocols), Humana Press, New York, 2011.
  • [12] B.S. Sproat, J. Biotechnol., 1995, 41, 221.
  • [13] V. Arora, D.C. Knapp, M.T. Reddy, D.D. Weller, P.L. Iversen, J. Pharm. Sci., 2002, 91, 1009.
  • [14] G.R. Devi, T.M. Beer, C.L. Corless, V. Arora, D.L. Weller, P.L. Iversen, Clin. Cancer Res., 2005, 11, 3930.
  • [15] S. Studzińska, R. Rola, В. Buszewski, Anal. Bioanal. Chem., 2016, 408, 1585.
  • [16] Q. Tian, J. Rogness, M. Meng, Z. Li, Bioanalysis, 2017, 9, 861.
  • [17] A.C. McGinnis, B.S. Cummings, M.G. Bartlett, Anal. Chim. Acta, 2013, 799, 57.
  • [18] B. Chen, M.G. Bartlett, J. Chromatogr. A, 2013, 1288, 73.
  • [19] P. Turnpenny, J. Rawal, T. Schardt, S. Lamoratta, H. Mueller, M. Weber, K. Brady, Bioanalysis, 2011, 3, 1911.
  • [20] Ł. Nuckowski, A. Kaczmarkiewicz, S. Studzińska, Bioanalysis, 2018, 10, 1667.
  • [21] Ł. Nuckowski, A. Kaczmarkiewicz, S. Studzińska, В. Buszewski, Analyst, 2019, 144, 4622.
  • [22] W. Zhang, N. Leighl, D. Zawisza, M.J. Moore, E.X. Chen, J. Chromatogr. B, 2005, 829, 45.
  • [23] R.Z. Yu, R.S. Geary, D.K. Monteith, J. Matson, L. Truong, J. Fitchett, A.A. Levin, J. Pharm. Sci., 2004, 93, 48.
  • [24] G. Zhang, J. Lin, K. Srinivasan, O. Kavetskaia, J.N. Duncan, Anal. Chem., 2007, 79, 3416.
  • [25] Y. Cen, X. Li, D. Liu, F. Pan, Y. Cai, B. Li, W. Peng, C. Wu, W. Jiang, H. Zhou, J. Pharm. Biomed. Anal., 2012, 70, 447.
  • [26] B. Chen, M. Bartlett, AAPS J., 2012, 14, 772.
  • [27] J. Li, J. Liu, J. Enders, M. Arciprete, C. Tran, K. Aluri, L.-H. Guan, J. O’Shea, A. Bisbe, K. Charissé, I. Zlatev, D. Najarían, Y. Xu, Bioanalysis, 2019, 11, 1955.
  • [28] J. Liu, J. Li, C. Tran, K. Aluri, X. Zhang, V. Clausen, I. Zlatev, L. Guan, S. Chong, K. Charisse, J.T. Wu, D. Najarian, Y. Xu, Bioanalysis, 2019, 11, 1967.
  • [29] M. Hemsley, M. Ewles, G. Lee, Bioanalysis, 2012, 4, 1457.
  • [30] K.N. Marsh, A. Deev, A.C.-T. Wu, E. Tran, A. Klamt, Korean J. Chem. Eng., 2002, 19, 357.
  • [31] K. Marsh, J. Boxall, R. Lichtenthaler, Fluid Phase Equilib., 2004, 219, 93.
  • [32] S. Zhang, N. Sun, X. He, X. Lu, X. Zhang, J. Phys. Chem. Ref. Data., 2006, 35, 1475.
  • [33] H. Olivier-Bourbigou, L. Magna, D. Morvan, Appl. Catal. A Gen., 2010, 373, 1.
  • [34] A. Berthod, S. Carda-Broch, Anal. Bioanal. Chem., 2004, 380, 168.
  • [35] C. Maton, N. De Vos, C. V. Stevens, Chem. Soc. Rev., 2013, 42, 5963.
  • [36] B. Buszewski, S. Studzińska, Chromatographia, 2008, 68, 1.
  • [37] Y. Huang, S. Yao, H. Song, J. Chromatogr. Sci., 2013, 51, 739.
  • [38] J.H. Wang, D.H. Cheng, X.W. Chen, Z. Du, Z.L. Fang, Anal. Chem., 2007, 79, 620.
  • [39] K.D. Clark, O. Nacham, H. Yu, T. Li, M.M. Yamsek, D.R. Ronning, J.L. Anderson, Anal. Chem., 2015, 87, 1552.
  • [40] L. Vidal, M.L. Riekkola, A. Canals, Anal. Chim. Acta., 2012, 715, 19.
  • [41] Ş. Tokalioglu, E. Yavuz, H. Şahan, S.G. Çolak, K. Ocakoğlu, M. Kaçer, Ş. Patat, Talanta, 2016, 159, 222.
  • [42] T. Chatzimitakos, C. Stalikas, Separations, 2017, 4, 14.
  • [43] X. Cao, L. Shen, X. Ye, F. Zhang, J. Chen, W. Mo, Analyst, 2014, 139, 1938.
  • [44] M.-Q. Cai, J. Su, J.-Q. Hu, Q. Wang, C.-Y. Dong, S.-D. Pan, M.-C. Jin, J. Chromatogr. A, 2016, 1459, 38.
  • [45] M. Sun, Y. Bu, J. Feng, C. Luo, J. Sep. Sci., 2016, 39, 375.
  • [46] X. Zhou, Y. Zhang, Z. Huang, D. Lu, A. Zhu, G. Shi, Sci. Rep., 2016, 6, 38417.
  • [47] X. Xu, M. Zhang, L. Wang, S. Zhang, M. Liu, N. Long, X. Qi, Z. Cui, L. Zhang, Food Anal. Methods, 2016, 9, 1696.
  • [48] D. Xiao, D. Yuan, H. He, C. Pham-Huy, H. Dai, C. Wang, C. Zhang, Carbon, 2014, 72, 274.
  • [49] H. Chen, Y. Yuan, C. Xiang, H. Yan, Y. Han, F. Qiao, J. Chromatogr. A, 2016, 1474, 23.
  • [50] M. Luo, D. Liu, L. Zhao, J. Han, Y. Liang, P. Wang, Z. Zhou, Anal. Chim. Acta., 2014, 852, 88.
  • [51] M. Serrano, T. Chatzimitakos, M. Gallego, C.D. Stalikas, J. Chromatogr. A, 2016, 1436, 9.
  • [52] M. Pei, Z. Zhang, X. Huang, Y. Wu, Talanta, 2017, 165, 152.
  • [53] N. Fontanals, S. Ronka, F. Borrull, A.W. Trochimczuk, R.M. Mareé, Talanta, 2009, 80, 250.
  • [54] X. Huang, L. Chen, D. Yuan, S. Bi, J. Chromatogr. A, 2012, 1248, 67.
  • [55] L. Chen, X. Huang, Y. Zhang, D. Yuan, J. Chromatogr. A, 2015, 1403, 37.
  • [56] R. Nayebi, G. Daneshvar Tarigh, F. Shemirani, Sci. Rep., 2019, 9, 11130.
  • [57] M. Tian, H. Yan, K.H. Row, Anal. Lett., 2009, 43, 110.
  • [58] W. Bi, M. Tian, K.H. Row, Phytochem. Anal., 2010, 21, 496.
  • [59] F. Zhao, Y. Meng, J.L. Anderson, J. Chromatogr. A, 2008, 1208, 1.
  • [60] M. Tian, W. Bi, K.H. Row, J. Sep. Sci., 2009, 32, 4033.
  • [61] P. Żuvela, M. Skoczylas, J. Jay Liu, T. Baczek, R. Kaliszan, M.W. Wong, B. Buszewski, Chem. Rev., 2019, 119, 3674.
  • [62] B. Buszewski, M. Jezierska, M. Wełniak, D. Berek, J. High Resolut. Chromatogr., 1998, 21, 267.
  • [63] G. Fang, J. Chen, J. Wang, J. He, S. Wang, J. Chromatogr. A, 2010, 1217, 1567.
  • [64] W. Bi, J. Zhou, K.H. Row, Talanta, 2011, 83, 974.
  • [65] M. Tian, H. Yan, K.H. Row, J. Chromatogr. B, 2009, 877, 738.
  • [66] M. Tian, K.H. Row, Chromatographia, 2011, 73, 25.
  • [67] H. Zhang, K.H. Row, J. Carbohydr. Chem., 2014, 33, 225.
  • [68] H.M. Marwani, E.M. Bakhsh, Am. J. Anal. Chem., 2013, 4, 8.
  • [69] L. Vidal, J. Parshintsev, K. Hartonen, A. Canals, M.-L. Riekkola, J. Chromatogr. A, 2012, 1226, 2.
  • [70] M. Li, P.J. Pham, T. Wang, C.U. Pittman, T. Li, Bioresour. Technol., 2009, 100, 6385.
  • [71] Ł. Nuckowski, E. Zalesińska, K. Dzieszkowski, Z. Rafiński, S. Studzińska, Talanta, in press.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4c0ab8d9-0c21-4f6e-93a2-4f76100403a3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.