PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Studying on mineralogical and petrological characteristics of Gara Djebilet oolitic iron ore, Tindouf (Algeria)

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Demand for iron ore worldwide has been steadily increasing which leads to the extraction of iron ore deposits with more complex mineralogies and higher levels of silicon and phosphorus impurities. This is the case in Algeria with the iron ore deposit of Gara Djebilet, Tindouf; where it has recently been exploited to ensure the sufficiency of iron ore required to produce iron and steel products. This deposit has remained unexploited for several decades due to inadequate knowledge of its mineralogy, treatment, and economic assessments. This study aims to find out the microstructure, chemical composition, and mineralogical distribution of valuable minerals and impurities, to understand the efficient processing methods for this specific iron ore. The characterization of representative ironstone samples taken from the studied area was carried out using optical microscopy, X-ray fluorescence spectrometer (XRF), petrographic microscope, X-ray diffractometer (XRD), and scanning electron microscope (SEM) coupled with energy dispersive X-ray spectroscopy (EDS). The results of the mineralogical analyses confirmed that it is an oolitic fine-grained ore consisting of gangue minerals principally composed of quartz, apatite, and iron-rich concentric cored structures. Chemical analyses of the ore indicated that it contains 56.58 wt% Fe with 7.98 wt% SiO2, 7.09 wt% Al2O3, and minor amounts of P2O5, CaO, MgO, and TiO2 compounds. The phosphorus associated was present in both ooids and groundmass, indicating that the ore has a complex texture with very rich and diverse mineralogy. For that, two conceptual scenarios were potentially proposed for processing the studied iron ore, while further detailed automated mineralogical information was required to make sure about the processing units from a practical perspective.
Rocznik
Strony
art. no. 178382
Opis fizyczny
Bibliogr. 48 poz., rys., tab., wykr.
Twórcy
  • National Higher School of Technology and Engineering, Mines Metallurgy Materials Laboratory (L3M), 23005, Annaba, Algeria
  • National Higher School of Technology and Engineering, Mines Metallurgy Materials Laboratory (L3M), 23005, Annaba, Algeria
  • Laboratory Mineral Resources Valorization and Environment, Badji Mokhtar University, Annaba, Algeria
autor
  • Transportation Engineering Department, Laboratory of Transports and Environment Engineering, Mentouri Brothers University Constantine, Algeria
  • Department of Mining Engineering, Higher Education Complex of Zarand, Shahid Bahonar University of Kerman, Kerman 7761156391, Iran
  • Mineral Industries Research Center, Shahid Bahonar University of Kerman, 76169133 Kerman, Iran
  • Department of Geoscience and Petroleum, Faculty of Engineering, Norwegian University of Science and Technology, Trondheim 7031, Norway
  • Mineral Services Ltd, Ty Maelgwyn, 1 A Gower Road, Cathays, Cardiff CF244PA, United Kingdom
Bibliografia
  • ANAM, ASGA, 2019. Inventaire des substances minérales métalliques ferreuses et non ferreuses de l'Algérie, réalisé par la ministère de l’énergie et des mines en collaboration avec l'agence du service géologique de l'Algérie 2019. pp. 75–120.
  • BEATTIE, E., PLAZEK, C., BLAKE, K., 2017. Dirty goethite- a geochemical characterization of some western Robe River channel iron deposits. In: Proceedings, Iron Ore 2017. Australasian Institute of Mining and Metallurgy, pp. 489–502.
  • BERSI, M., SAIBI, H., CHABOU, M.C., 2016. Aerogravity and remote sensing observations of an iron deposit in Gara Djebilet, southwestern Algeria. Journal of African Earth Sciences. 116, 134–150.
  • CHEN, C., ZHANG, Y., ZOU, K., ZHANG, F., 2023. Flotation Dephosphorization of High-Phosphorus Oolitic Ore. Minerals. 13, 1485.
  • CHENG, C.T., MISRA, V.N., CLOUGH, J., MUNI, R., 1999. Dephosphorisation of Western Australian iron ore by hydrometallurgical process. Minerals Engineering. 12, 1083–1092.
  • CLOUT, J.M.F., MANUEL, J.R., 2015. Mineralogical, chemical and physical characteristics of iron ore. In : Lu, Liming (Ed.), Iron Ore : Mineralogy, Processing and Environmental Sustainability. Elsevier, pp. 45–84.
  • DE VILLIERS, J.P.R., LU, L., 2015. XRD analysis and evaluation of iron ores and sinters. In: Lu, Liming (Ed.), Iron Ore: Mineralogy, Processing and Environmental Sustainability. Elsevier, pp. 85–100 (Chapter 3).
  • DEY, S., MOHANTA, M.K., SINGH, R., 2017. Mineralogy and textural impact on beneficiation of goethitic ore. International Journal of Mining Science and Technology. 27, 445–450.
  • DONSKOI, E., POLIAKOV, A., MANUEL, J.R., 2015. Automated optical image analysis of natural and sintered iron ore. In: Lu, Liming (Ed.), Iron Ore: Mineralogy, Processing and Environmental Sustainability. Elsevier, pp. 101–160 (Chapter 4).
  • FISHER-WHITE, M.J., LOVEL, R.R., SPARROW, G.J., 2012. Phosphorus removal from goethitic iron ore with a lowtemperature heat treatment and a caustic leach. ISIJ Int. 52, 797– 803.
  • FOZOONI, S., KHOSHDAST, H., HASSANI, H., HAMIDIAN, H., 2017. Synthesis of oxazolone and imidazolone derivatives in presence of H2O2 promoted fly ash as a novel and efficient catalyst. Journal of Sciences. 28(3), 221–230.
  • GHOLAMI, A.R., ASGARI, K., KHOSHDAST, H., HASSANZADEH, A., 2022. A hybrid geometallurgical study using coupled Historical Data (HD) and Deep Learning (DL) techniques on a copper ore mine. Physicochemical Problems of Mineral Processing. 58(3), 147841.
  • GUERRAK, S., 1987. Paleozoic oolitic ironstones of the Algerian Sahara: a review. Journal of African Earth Sciences. 6 (1) 1–8.
  • GUERRAK, S., 1988. Geology of the early Devonian oolitic iron ore of the Gara Djebilet field, Saharan Platform, Algeria. Ore Geol. Rev. 3 (4), 333-358.
  • GUO, L., GAO, J., ZHONG, Y., GAO, H., GUO, Z., 2015. Phosphorus removal from high phosphorus oolitic iron ore with acid leaching fluidized-reduction and melt-separation process. ISIJ International. 55(9), 1806–1815.
  • HANNA, J., ANAZIA, I.J., 1990. Processing of hematitic iron ores. In: Hanna, J., Attia, Y.A. (Eds.), Advances in Fine Particles Processing. Elsevier, New York, pp. 413–425.
  • HASANIZADEH, I., KHOSHDAST, H., ASGARI, K., HUANG, Q., RAHMANIAN, A., 2023. Studying the influence of cationized pyrolysis oil on the flotation of a bituminous coal using historical data design. International Journal of Coal Preparation and Utilization. DOI: https://doi.org/10.1080/19392699.2023.2254708
  • HASSANZADEH, A., 2023. A short pragmatic overview on the development of flotation machines from historical, mechanical, and metallurgical perspectives, Proceedings of 9th International Congress of Mining, Machinery and Technologies, September 13-15, Izmir, Türkiye, 10-15.
  • JARKANI, S.A., KHOSHDAST, H., SHARIAT, E., SAM, A., 2014. Modeling the effects of mechanical parameters on the hydrodynamic behavior of vertical current classifiers. International Journal of Mining Science and Technology. 24(1), 123–127.
  • JOAN, J.K., ALEX, M.M., AUGUSTINE, B.M., STEPHEN, K.K., 2015. Characterization of selected mineral ores in the Eastern Zone of Kenya: Case study of Mwingi North Constituency in Kitui County. Int. J. Mining Eng. Mineral Proc. 4 (1) 8–17.
  • JUNHUI, X., KAI, Z., ZHEN, W., 2020. Studying on mineralogical characteristics of a refractory high-phosphorous oolitic iron ore. SN Applied Sciences. 2, 1051.
  • KHOSHDAST, H., 2019. Practical problems in froth flotation. Hormozgan University Press, Tehran, Iran.
  • KHOSHDAST, H., SAM, A., 2012. An efficiency evaluation of iron concentrates flotation using rhamnolipid biosurfactant as a frothing reagent. Environmental Engineering Research. 17(1), 9–15.
  • KHOSHDAST, H., SHOJAEI, V., 2012. Ash removal from a sample coal by flotation using rhamnolipid biosurfactants. Journal of Mining World Express. 1(2), 39–45.
  • LI, D., MOGHADDAM, MR., MONJEZI, M., DANIAL J. A., AMIRHOSSEIN M. 2020. Development of a Group Method of Data Handling Technique to Forecast Iron Ore Price. Applied Sciences. 10 (7) 23-64. MDPI.
  • LI, G., RAO, M., OUYANG, C., ZHANG, S., PENG, Z., TAO., 2015. Distribution characteristics of phosphorus in the Metallic Iron during Solid-State Reductive Roasting of Oolitic Hematite Ore. ISIJ International. 55 (11), 2304–2309.
  • LI, F., ZHANG, P., MA, X., YUAN, G., 2021. The iron oolitic deposits of the lower Devonian Yangmaba formation in the Longmenshan area, Sichuan Basin. Marine and Petroleum Geology. 130, 105-137.
  • LI, G., ZHANG, S., RAO, M., ZHANG, Y., JIANG, T., 2013. Effects of sodium salts on reduction roasting and Fe–P separation of high-phosphorus oolitic hematite ore. International Journal of Mineral Processing. 124, 26–34.
  • LOPEZ, G., FARFAN, J., BREYER, C., 2022. Trends in the global steel industry: Evolutionary projections and defossilisation pathways through power-to-steel. Journal of Cleaner Production. 375, 134-182.
  • LU, L., PAN, J., ZHU, D., 2015. Quality requirements of iron ore for iron production, Iron Ore. 475-504.
  • MONZAVI, M., and RAYGAN, Sh., 2020, Beneficiation of an Oolitic-iron ore by magnetization roasting and magnetic separation, Iranian Journal of Materials Science & Engineering, 17(3), 17-29.
  • NAKAJIMA, K., DAIGO, I., NANSAI, K., MATSUBAE, K., TAKAYANAGI, W., TOMITA, M., MATSUNO, Y., 2018. Global distribution of material consumption: Nickel, copper, and iron. Resour. Conserv. Recycl. 133, 369–374.
  • NOVOSELOV, K.A., BELOGUB, E.V., KOTLYAROV, V.A., FILIPPOVA, K.A., SADYKOV, S.A., 2018. Mineralogical and Geochemical Features of Oolitic Ironstones from the Sinara–Techa Deposit, Kurgan District, Russia. Geology of Ore Deposits. 60(3), 265–276.
  • PAN, J., LU, S., LI, S., ZHU, D., GUO, Z., SHI, Y., DONG, T., 2022. A new route to upgrading the high-phosphorus oolitic hematite ore by sodium magnetization roasting-magnetic separation-acid and alkaline leaching process. Minerals. 12(5), 568.
  • QUAST, K., 2017. An investigation of the flotation minimum in the oleate flotation of hematite under alkaline conditions. Minerals Engineering. 113, 71–82.
  • QUAST, K., 2018. A review on the characterization and processing of oolitic iron ores. Minerals Engineering. 126, 89–100.
  • RAMANAIDOU, E., WELLS, M., LAU, I., LAUKAMP, C., 2015. Characterization of iron ore by visible and infrared reflectance and, Raman spectroscopies. In: Liming, Lu (Ed.), Chapter 6 in, Iron Ore: Mineralogy, Processing and Environmental Sustainability. Elsevier, pp. 191–228.
  • RAO, Z.Q., ZHANG, Y.S., JIBN, Y.C., 2013. Improved flotation of oolitic hematite ore based on a novel cationic collector. Advanced Materials Research. 303–306, 2713–2716.
  • RIPKE, S. Jayson, POVEROMO, J., BATTLE, T.P., WALQUI, H., HASELHUHN, H., and LARSON, M., Iron Ore Beneficiation, 2019. Chapter 12.16. SME Mineral Processing and Extractive Metallurgy Handbook, 1755-1779.
  • SILVA, L.M., NASCIMENTO, M., OLIVEIRAC, E.M., QUEIROZ, A,V., FERNANDES, M,T., CASTRO, J,A., 2020. Evaluation of the Influence of Particle Size in the Acid Baking Process for the Reduction of Phosphorus Content in Iron Ore. Materials Research. 23(6).
  • SONG, S., CAMPOS-TORO, E.F., LÓPEZ-VALDIVIESO, A., 2013. Formation of micro-fractures on an oolitic iron ore under microwave treatment and its effect on selective fragmentation. Powder Technol. 243, 155–160.
  • SUN, Y.S., HAN, Y.X., GAO, P., WANG, Z.H., REN, D.Z., 2013. Recovery of iron from high phosphorus oolitic iron ore using coal-based reduction followed by magnetic separation. International Journal of Minerals, Metallurgy and Materials. 20(5), 411.
  • TAIB, M., 2009. The Mineral Industry of Algeria. U.S. Geological Survey. Minerals Yearbook Algeria. p.13.
  • TANG, H., WANG, J., GUO, Z., OU, T., 2013. Intensifying gaseous reduction of high phosphorus iron ore fines by microwave pretreatment. Journal of Iron and Steel Research International. 20 (5), 17-23.
  • TONZETIC, I.Z., 2015. Quantitative analysis of iron ore using SEM-based technologies. In: Lu, Liming (Ed.), Iron Ore: Mineralogy, Processing and Environmental Sustainability. Elsevier, pp. 161–190 (Chapter 5).
  • WORLD STEEL ASSOCIATION., 2022. Total production of crude steel. (https://worldsteel.org/steel-bytopic/statistics/annual-production-steel-data/P1_crude_steel_total_pub/WORLD_ALL)
  • WU, J., YANG, J., MA, L., LI, Z., SHEN, X., 2016. A system analysis of the development strategy of iron ore in China. Resour. Policy. 48, 32–40.
  • YU, W., SUN, T., CUI, Q., 2014. Can sodium sulfate be used as an additive for the reduction roasting of high-phosphorus oolitic hematite ore? International Journal of Mineral Processing. 133, 119–122.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4c098601-4559-44c6-ba86-3097d03016f3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.