PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fabrication and Characteristics of Copper- Intermetallics Composites

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents the results of research on the production and application of sintered copper matrix composite reinforced with titanium-copper intermetallic phases. Cu- Ti composites were fabricated by powder metallurgy. The starting materials for obtaining the sintered composites were commercial powders of copper and titanium. Experiments were carried out on specimens containing 2.5, 5, 7.5 and 10 % of titanium by weight. Finished powders mixtures containing appropriate quantities of titanium were subjected to single pressing with a hydraulic press at a compaction pressure of 620 MPa. Obtained samples were subjected to sintering process at 880°C in an atmosphere of dissociated ammonia. The sintering time was 6 hours. The introduction of titanium into copper resulted in the formation of many particles containing intermetallic phases. The obtained sinters were subjected to hardness, density and electrical conductivity measurements. Observations of the microstructure on metallographic specimens made from the sintered compacts were also performed using a optical microscope. An analysis of the chemical composition (EDS) of the obtained composites was also performed using a scanning electron microscope. Microstructural investigations by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) showed that after 6 hours of sintering at 880°C intermetallic compounds: TiCu, TiCu2, TiCu4, Ti2Cu3, Ti3Cu4 were formed. The hardness increased in comparison with a sample made of pure copper whereas density and electrical conductivity decreased. The aim of this work was to fabricate copper matrix composites reinforced with titanium particles containing copper- titanium intermetallic phases using powder metallurgy technology and determine the influence of the titanium particles on the properties of the sintered compacts and, finally, analyse the potentials application for friction materials or electric motors brushes.
Rocznik
Strony
25--30
Opis fizyczny
Bibliogr. 21 poz., rys., tab., wykr.
Twórcy
autor
  • Kielce University of Technology, Kielce, Poland
autor
  • Kielce University of Technology, Kielce, Poland
Bibliografia
  • [1] Islak, S., Kur, D. & Buytoz, S. (2014). Effect of Sintering Temperature on Electrical and Microstructure Properties of Hot Pressed Cu-TiC Composites. Science of Sintering. 46, 15-21. DOI: 10.2298/SOS1401015I.
  • [2] Semboshi, S. & Takasugi, T. (2013). Fabrication of high- strength and high- conductivity Cu-Ti alloy wire by aging in a hydrogen atmosphere. Journal of Alloy and Compounds. 580, 397-400. DOI:doi.org/10.1016/j.jallcom.2013.03.216.
  • [3] Mikuła, J., Łach, M. & Kowalski, J.S. (2015). Copper matrix composites reinforced with volcanic tuff. Metalurgija. 54, 143-146, DOI: UDC – UDK 669.3:621.762:551.311.7=111.
  • [4] Kargul, M., Konieczny, M. & Borowiecka-Jamrozek, J. (2018). The effect of the addition of zeolite particles one the performance characteristics of sintered copper matrix composites. Tribologia. 6(2018). 51-62. DOI: 10.5604/01.3001.0012.8421.
  • [5] Lee, D.W. & Yan, M. (2004). Nanostructured Cu- Al2O3 composite produced by thermochemical process for electrode application. Materials Letters. 58, 378-383. DOI: doi.org/10.1016/S0167-577X(03)00505-6.
  • [6] Shi, Z. & Yan, M. (1998). The preparation of Al2O3-Cu composite by internal oxidation. Applied Surface Science. 134, 103-106. DOI: doi.org/10.1016/S0169-4332(98)00223-2.
  • [7] Konieczny, M., Dziadoń, A., Mola, R. (2006). Structure Of Copper-Intermetallics Composite Sintered From Copper And Titanium Powders In 2-nd International Conference Engineering and Education. 2006. (pp. 89-94), Białka Tatrzańska: Poland.
  • [8] Correia, J,B., Davies, H.A. & Sellars, C.M. (1996). Strenghtening in rapidly solidified age hardened Cu-Cr and Cu-Cr-Zr alloys. Acta Materialia. 45(1), 177-190. DOI: doi.org/10.1016/S1359-6454(96)00142-5.
  • [9] Garzon-Manjon, A., Christiansen, L., Kirchlechner, I., Breitbach, B. & Liebscher, CH. (2019). Synthesis, microstructure and hardness of rapidly soldified Cu-Cr alloys. Journal of Alloys and Compunds. 794, 203-209. DOI: doi.org/10.1016/j.jallcom.2019.04.209.
  • [10] Taha, M.A. & Zawrah, M.F. (2017). Effect of nano ZrO2 on strengthening and electrical properties of Cu- matrix nanocomposites prepared by mechanical alloying. Ceramics International. 43, 12698-12704. DOI: doi.org/10.1016/ j.ceramint.2017.06.153.
  • [11] Samal, C.P., Parihar, J.S. & Chaira, D. (2013). The effect of milling and sintering techniques on mechanical properties of Cu-graphite metal matrix composite prepared by powder metallurgy route. Journal of Alloys and Compounds. 569, 95-101. DOI: doi.org/10.1016/j.jallcom.2013.03.122.
  • [12] Wang, C., Lin, H., Zhang, Z. & Li, W. (2018). Fabrication, interfacial characteristics and strengthening mechanism of ZrB2 microparticles reinforced Cu composites prepared by hot pressing sintering. Journal od Alloys and Compounds. 748(2018), 546-552. DOI: doi.org/10.1016/j.jallcom. 2018.03.169.
  • [13] Konieczny, M. & Mola, R. (2007). Sintered copper matrix composites containing aluminium-ferric intermetallic phases. Composites Theory and Practice. 7(2), 109-113.
  • [14] Jozwik, P., Polkowski, W. & Bojar, Z. (2015). Applications of Ni3Al Based Intermatallic Alloys- Current Stage and Potential Perceptivities. Materials. 8, 2537-2568. DOI:dx.doi.org/10.3390%2Fma8052537.
  • [15] Hayama, A.O.F., Andrade, P.N., Cremasco, A. & Contieri, J.R. (2014). Effects of composition and heat treatment on the mechanical behavior of Ti-Cu alloys. Materials and Design. 55(2014), 1006-1013. DOI: doi.org/10.1016/j.matdes. 2013.10.050.
  • [16] Karakulak, E. (2017). Characterization of Cu- Ti powder metallurgical materials. International Journal of Minerals, Metallurgy and Materials. 24(1), 83-90. DOI:10.1007 /s12613-017-1381-x.
  • [17] Semboshi, S., Niskida, T. & Namakura, H. (2009). Microstructure and mechanical properties of Cu- 3 at% Ti alloy aged in a hydrogen atmosphere. Material Science and Engineering A. 517(2009), 105-113. DOI: doi.org/10.1016/j.msea.2009.03.047.
  • [18] Nagarjuna, S., Srinivas, M., Balasubramanian, K. & Sarma, D.S. (1999). On the variation of mechanical properties with solute content Cu- Ti alloys. Materials Science & Engineering A. 259, 34-42. DOI: doi.org/10.1016/S0921-5093(98)00882-X.
  • [19] Grdina, Y.V., Gordeeva, L.T, Timonina, L.G. & Zifferman, N.R. (1967). Metallic compounds in the Ti-Cu system. Metal Science and Heat Treatment. 9(2), 85-86, DOI: doi.org/10.1007/BF00819827.
  • [20] Murray, J.L. (1983). The Cu-Ti (Copper-Titanium) system. Bulletin of Alloy Phase Diagrams. 4(1), 81-95. DOI: doi.org/10.1007/BF02880329.
  • [21] Kundu, S., Chatterjee, S., Olson, D. & Mishra, B. (2008). Interface microstructure and strength properties of the diffusion bonded joints of Titanium- Cu Interlayer- Stainless Steel. Metallurgical and Materials Transactions A. 39(9), 2106-2114. DOI: doi.org/10.1007/s11661-008-9562-x.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4bfeb1f1-e1cf-4248-afa9-fa61f90464b1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.