PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Method of high heat flux removal by usage of liquid spray cooling

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
High heat flux removal are important issue in many perspective applications such as computer chips, laser diode arrays, or boilers working on supercritical parameters. Electronic microchips constructed nowadays are model example of high heat flux removal, where the cooling system have to maintain the temperature below 358 K and take heat flux up to 300 W/cm2. One of the most efficient methods of microchips cooling turns out to be the spray cooling method. Review of installations has been accomplished for removal at high heat flux with liquid sprays. In the article are shown high flux removal characteristic and dependences, boiling critical parameters, as also the numerical method of spray cooling analysis.
Rocznik
Strony
173--184
Opis fizyczny
Bibliogr. 21 poz., il.
Twórcy
autor
  • Wroclaw University of Technology, Department of Thermodynamics, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
Bibliografia
  • [1] Agostini B. et al.: State of the art of high heat flux cooling technologies. Heat Transf. Eng. 28(2007), 4, 258-281.
  • [2] Chunqiang S. et al.: Development and experimental investigation of a novel spray cooling system integrated in refrigeration circuit. Appl. Therm. Eng. 33-34(2012), 246-252.
  • [3] Piasecka M., Maciejewska B.: Application of the finite element method to the determining of boiling heat transfer coefficient for minichannel flow. Arch. Thermodyn. 34(2013), 1, 55-69.
  • [4] Kim J.: Spray cooling heat transfer: The state of the art. Int. J. Heat Fluid Fl. 28 (2007), 753-767.
  • [5] Mikielewicz D., Muszyński T., Mikielewicz J.: Model of heat transfer in the stagnation point of rapidly evaporating microjet. Arch. Thermodyn. 33(2012), 139-152.
  • [6] Orzechowski Z., Prywer J.: Spraying Liquids, 2nd edn. WNT, Warszawa 1991 (in Polish).
  • [7] Ishimoto J., Oh U., Tan D.: Integrated computational study of ultra-high heat flux cooling using cryogenic micro-solid nitrogen spray. Cryogenics 52(2012), 505-517.
  • [8] Lin L., Ponnappan R.: Heat transfer characteristics of spray cooling in a closed loop. Int. J. Heat Mass Transf. 46(2003), 3737-3746.
  • [9] Mudawar I., Valentine W.S.: Determination of the local quench curve for spray-cooled metallic surfaces. J. Heat Treat. 7(1989), 107-121.
  • [10] Estes K.A., Mudawar I.: Correlation of Sauter mean diameter and critical heat flux for spray cooling of small surfaces. Int. J. Heat Mass Transf. 38(1995), 16, 2985-2996.
  • [11] Rybicki J.R., Mudawar I.: Single-phase and two-phase cooling characteristics of upward-facing and downward-facing sprays. Int. J. Heat Mass Transf. 49(2006), 5-16.
  • [12] Hsieh S. et al.: Spray cooling characteristics of water and R-134a. Part I: nucleate boiling. Int. J. Heat Mass Transf. 47(2004), 5703-5712.
  • [13] Visaria M., Mudawar I.: Effects of high subcooling on two-phase spray cooling and critical heat flux. Int. J. Heat Mass Transf. 51(2008), 5269-5278.
  • [14] Mudawar I, Estes K.A.: Optimizing and predicting CHF in spray cooling of a square surface. J. Heat Transf. 118(1996), 672-679.
  • [15] Ortiz L., Gonzalez J.E.: Experiments on steady-state high heat fluxes using spray cooling. Exp. Heat Transf. 12(1999), 215-233.
  • [16] Chen R., Chow L.C., Navedo J.E.: Effects of spray characteristics on critical heat flux in subcooled water spray cooling. Int. J. Heat Mass Transf. 45(2002), 4033-4043.
  • [17] Orzechowski Z.: Two-Phase Flows, One-Dimensional, Steady Adiabatic. PWN, Warszawa 1990 (in Polish).
  • [18] Tan Y.B. et al.: Multinozzle spray cooling for high heat flux applications in a closed loop system. Appl. Therm. Eng. 54(2013), 372-379.
  • [19] Shedd T.A.: Next generation spray cooling: High heat flux management in compact spaces. Heat Transf. Eng. 28(2007), 2, 87-92.
  • [20] Hou Y.: Experimental study on phase change spray cooling. Exp. Therm. Fluid Sci. 46(2013), 84-88.
  • [21] ANSYS CFX-Solver Modeling Guide, 2009.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4bfc98a2-8963-4bdb-af4b-5c998185a6e7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.