PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Treatment of vinasse liquid from sugarcane industry using electro-coagulation/flocculation followed by ultra filtration

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this present work, vinasse, a by-product of sugarcane industry, was examined using combined treatment methods to purify it. Electrocoagulation/flocculation, ultrafiltration were applied as pre-treatment and post-treatment, respectively. The effectiveness of combined process was evaluated based on colour, turbidity and chemical oxygen demand (COD) removal. The efficiency of electrochemical reactor was investigated according to process variables such as retention time, electrode distance and electrolyte dose. From the results, the price to treat unit vinasse is found to be 2.5 US$/m3 under optimum conditions. FT-IR analysis of sludge obtained shows the results of electro-coagulation process. Ultrafiltration as post treatment experiments showed the enhanced removal efficiency of colour (91%), turbidity (88%) and COD (85%). The results showed that electrocoagulation followed by ultrafiltration is a suitable combined technique to reduce the colour, turbidity and COD from vinasse liquid.
Rocznik
Strony
40--47
Opis fizyczny
Bibliogr. 33 poz., rys., tab.
Twórcy
  • Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, 510275, Guangzhou, China
  • State University of Maringá, Department of Chemical Engineering, Av. Colombo 5790, 87020-900, Maringá-PR, Brazil
  • State University of Maringá, Department of Chemical Engineering, Av. Colombo 5790, 87020-900, Maringá-PR, Brazil
  • State University of Maringá, Department of Chemical Engineering, Av. Colombo 5790, 87020-900, Maringá-PR, Brazil
  • State University of Maringá, Department of Chemical Engineering, Av. Colombo 5790, 87020-900, Maringá-PR, Brazil
Bibliografia
  • 1. Zayas T.P. Geissler G. & Hernandez F. (2007). Chemical oxygen demand reduction in coffee wastewater through chemical flocculation and advanced oxidation processes. J. Environ. Sci. 19 300–305. DOI: 10.1016/S1001-0742(07)60049-7.
  • 2. Benincá C. Vargas F.T. Martins M.L. Gonçalves F.F. Vargas R.P. Freire F.B. & Zanoelo E.F. (2016). Removal of clomazone herbicide from a synthetic effluent by electrocoagulation. Water Sci. Technol. 73 2944–2952. DOI: 10.2166/wst.2016.133.
  • 3. Thirugananasambandham K. & Sivakumar V. (2015). Application of D-optimal design to extract the pectin from lime bagasse using microwave green irradiation. International J. Biolog. Macromol. 72 1351–1357. DOI: 10.1016/j.ijbiomac.2014.09.054.
  • 4. Thirugananasambandham K. Kandasamy S. Sivakumar V. Kiran kumar R. & Mohanavelu R. (2015). Modeling of by-product recovery and performance evaluation of Electro-Fenton treatment technique to treat poultry wastewater. J. Taiwan Instit. Chem. Engine. 46 89–97. https://doi.org/10.1016/j.jtice.2014.09.004.
  • 5. Abdel S.G.A. Baraka A.M. Omran K.A. & Mokhtar M.M. (2012). Removal of Some Pesticides from the Simulated Waste Water by Electrocoagulation Method Using Iron Electrodes. Int. J. Electrochem. 7 6654–6665.
  • 6. Aitbara A. Cherifi M. Hazourli S. & Leclerc J.P. (2016). Continuous treatment of industrial dairy effluent by electrocoagulation using aluminum electrodes. Desalin. Water. Treat. 57 3395–3404. DOI: 10.1080/19443994.2014.989411.
  • 7. Mollah M.Y.A. Morkovsky P. Gomes J.A.G. Kesmez M. Parga J. & Cocke D.L. (2004). Fundamentals present and future perspectives of electrocoagulation. J. Hazard. Mater. 114 199–210. DOI: 10.1016/j.jhazmat.2004.08.009.
  • 8. Moradi M. Eslami A. & Ghanbari F. (2016). Direct Blue 71 removal by electrocoagulation sludge recycling in photo-Fenton process: response surface modeling and optimization. Desalin. Water. Treat. 57 4659–4670. DOI: 10.1080/19443994.2014.995714.
  • 9. Bui H.M. (2016). Modeling the removal of Sunfix Red S3B from aqueous solution by electrocoagulation process using artificial neural network. J. Serb. Chem. Soc. 81 959–974. DOI: 10.2298/JSC160108032M.
  • 10. Heffron J. Marhefke M. & Mayer B.K. (2016). Removal of trace metal contaminants from potable water by electrocoagulation. Sci. Rep. 6 1–9. DOI: 10.1038/srep28478.
  • 11. Daneshvar N. Khataee A.R. Amani Ghadim A.R. & Rasoulifard M.H. (2007). Decolorization of C.I. Acid Yellow 23 solution by electrocoagulation process: Investigation of operational parameters and evaluation of specific electrical energy consumption (SEEC). J. Hazard. Mater. 148 566–572. DOI: 10.1016/j.jhazmat.2007.03.028.
  • 12. Gengec E. Kobya M. Demirbas E. Akyol A. & Oktor K. (2012). Optimization of baker’s yeast wastewater using response surface methodology by electrocoagulation. Desalination 286 200–209. DOI: 10.1016/j.desal.2011.11.023.
  • 13. Thirugananasambandham K. & Sivakumar V. (2017). Microwave assisted extraction process of betalain from dragon fruit and its antioxidant activities J. Saudi Soc. Agric. Sci. 16 41–48. http://dx.doi.org/10.1016/j.jssas.2015.02.001. ISSN: 1658-077X.
  • 14. Thirugananasambandham K. & Sivakumar V. (2016). Enhancement of shelf life of coriandrum sativum leaves using vacuum drying process: Modeling and Optimization. JJ. Saudi Soc. Agric. Sci. 15 195–201. https://doi.org/10.1016/j.jssas.2014.12.001.
  • 15. Thirugananasambandham K. Sivakumar V. & Prakash Maran J. (2015). Evaluation of an electrocoagulation process for the treatment of bagasse -based pulp and paper industry wastewater. Environmental Progress and Sustainable Energy Volume 34 411–419 2015. DOI 10.1002/ep.12001.
  • 16. Caixeta L.B. Pedrosa E.M.R. Guimarães L.M.P. Barros P.A. & Rolim M.M. Changes in soil and nematode community after sugarcane harvest and vinasse application. Nematropica 41 (2011) 271–280. https://doi.org/10.1016/j.energy.2018.02.102.
  • 17. Thirugananasambandham K. & Sivakumar V. (2015). Eco-friendly approach of copper (II) ion adsorption on to cotton seed cake and its characterization: Simulation and Validation. J. Taiwan Instit. Chem. Engin. 50 198–204. https://doi.org/10.1016/j.jtice.2014.12.002.
  • 18. Prakash Maran J. Sivakumar V. Thirugananasambandham K. & Sridhar R. (2013). Multi-response analysis and optimization of extraction of biologically active compounds from pulp of Indian jamun fruit. Food Sci. Biotech. 23 9–14. https://link.springer.com/article/10.1007/s10068-014-0002-y.
  • 19. Barros V.G. Duda R.M. & Oliveira R.A. Biomethane production from vinasse in upflow anaerobic sludge blanket reactors inoculated with granular sludge Brazilian J. Microb. 47 (2016) 628–639. https://doi.org/10.1016/j.jenvman.2016.05.061
  • 20. Thirugnanasambandham K. Siva Kumar V. & Shine K. (2016). Studies On Treatment Of Egg Processing Industry Wastewater Using Electrocoagulation Method: Optimization Using Response Surface Methodology. Desalination and Water Treatment. 57 21721–21729. https://doi.org/10.1080/19443994.2015.1129504.
  • 21. Christofoletti C.A. Escher J.P. Correia J.E. Marinho J.F.U. & Fontanetti C.S. (2013). Sugarcane vinasse: environmental implications of its use. Waste Manag. 33 2752–2761. https://doi.org/10.1016/j.chemosphere.2018.02.179.
  • 22. Thirugananasambandham K. & Sivakumar V. (2015). Removal of eco-toxic matters from grey wastewater using Electro-Fenton treatment technique-modeling and optimization. Process Safety and Environmental Protection 95 60–68. http://dx.doi.org/10.1016/j.psep.2015.02.001.
  • 23. Alves P.R.L. Luz T.N. Sousa J.P. & Cardoso E.J.B.N. Ecotoxicological characterization of sugarcane vinasses when applied to tropical soils Sci. Total Environ. 526 (2015) 222–232. https://doi.org/10.1016/j.scitotenv.2018.02.029
  • 24. Thirugananasambandham K. Sivakumar V. & Prakash Maran J. (2014). Modeling and investigation of submerged fermentation process to produce extracellular polysaccharide using lactobacillus confusus Carbohydrate polymers. 114 43–47. doi: 10.1016/j.carbpol.2014.07.067.
  • 25. Zhi G. Xue Y. Chanhee B. Suiyi Z. Ying L. Wei F. Mingxin H. Menachem Elimelech & Xia Yang Self-cleaning anti-fouling hybrid ultrafiltration membranes via side chain grafting of poly(aryl ether sulfone) and titanium dioxide. J. Membrane Sci. 29 (2017) 1–10. https://doi.org/10.1016/j.cej.2018.02.088.
  • 26. Thirugananasambandham K. Sivakumar V. Prakash Maran J. & Kandasamy S. (2014). Application of response surface methodology for optimization of chemical coagulation process to treat rice mill wastewater. Environ. Sci.: Indian J. 9 237–247.
  • 27. Thirugnanasambandham K. & Siva Kumar V. (2015). Enzymatic catalysis treatment method of meat industry wastewater using lacasse: Modelling and Optimisation Journal of Environmental Health Science and Engineering. 13 86–92 DOI: 10.1186/s40201-015-0239-2.
  • 28. Thirugnanasambandham K. & Siva Kumar V. (2016). Modeling and Optimization Of Treatment Of Milk Industry Wastewater Using Chitosan–Zinc Oxide Nanocomposite Desalination and Water Treatment. 57 18630–18638. https://doi.org/10.1080/19443994.2015.1102089.
  • 29. Cardona C. Machuca-Martínez F. & Cabrales N.M. (2013). Treatment of vinasse by using electro-dissolution and chemical flocculation Ingeniería y Competitividad. 15 191–200. https://doi.org/10.1016/j.watres.2017.11.057.
  • 30. Paz-Pino O.L. Barba L.E. & Cabrales N.M. (2014). Vinasse treatment by coupling of electro-dissolution hetero-coagulation and anaerobic digestion Dyna rev.fac.nac.minas. . 8 187–195. https://doi.org/10.1016/j.compchemeng.2018.01.003.
  • 31. Liu B. Qu F. Liang H. Gan Z. Yu G. & Bruggen B. (2017). Algae-laden water treatment using ultrafiltration: Individual and combined fouling effects of cells debris extra-cellular and intracellular organic matter J. Membrane Sci. 528. 178–186. https://doi.org/10.1016/j.chemosphere.2017.11.051.
  • 32. Delcolle R. (2010). Projeto e manufatura de membranas cerâmicas via prensagem isostática para separação de emulsões óleo vegetal/água por microfiltração tangencial Ph.D. Thesis Mechanical Engineering Post-Graduation Program Mechanical Engineering Department University of São Paulo São Paulo Brazil. https://doi.org/10.1016/j.biotechadv.2017.07.003.
  • 33. Moraes B.S. Junqueira T.L. Pavanello L.G. Cavalett O. Mantelatto P.E. Bonomi A. & Zaiat M. Anaerobic digestion of vinasse from sugarcane biorefineries in Brazil from energy environmental and economic perspectives: Profit or expense?. Appl. Energy. 113 (2014). 825–835. https://doi.org/10.1016/j.chemosphere.2017.01.070.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4bfc364c-a137-439b-901a-dcda26226249
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.