PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Determination of di-n-butyl Phthalate in Environmental Samples

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A devised methodology presented here allows the determination of di-n-butyl phthalate in environmental samples (water and landfill leachate) using solid-phase extraction (SPE) and gas chromatography. It is developed based on the use of a gas chromatograph with an FID detector. Preliminary testing has also provided extraction parameters and conditions for chromatographic determination, with calibration applied by reference to an internal standard. The linearity of the calibration curve has been tested in DBP concentrations ranging from 0 to 7.5 mg/L, with the data obtained showing that, throughout this range, the detector readings as a function of the DBP concentrations remain linear (R2 coefficient >0.99). The average levels of recovery of DBP from aqueous solutions of phthalates are in the range of 97-109%, while the corresponding figures for leachates are 85-101%. The values of the coefficients of variation associated with the results obtained do not exceed 5%. The results, therefore, indicate that the applied extraction method is effective as regards DBP extraction from both water and landfill leachate, while numerous other substances present in the leachate from landfill sites apparently do not affect the correct determination of di-n-butyl phthalate by the method developed.
Rocznik
Tom
Strony
242--249
Opis fizyczny
Bibliogr. 31 poz., rys., tab.
Twórcy
  • Department of Chemistry and Environmental Engineering, Faculty of Civil and Environmental Engineering and Architecture, Rzeszow University of Technology, Poland
  • Department of Chemistry and Environmental Engineering, Faculty of Civil and Environmental Engineering and Architecture, Rzeszow University of Technology, Poland
Bibliografia
  • Babu, M.D., Babu, S.K., Kishore, M. (2016). Development and Validation of a GC-MS with SIM Method for the Determination of Trace Levels of Methane Sulfonyl Chloride as an Impurity in Itraconazole API. Journal of Analytical & Bioanalytical Techniques, 7(3), 1-6.
  • Cheng, Z., Dong, F., Xu, J., Liu, X., Wu, X., Chen, Z., Pan, X., Zheng, Y. (2016). Atmospheric pressure gas chromatography quadrupole-time-of-flight mass spectrometry for simultaneous determination of fifteen organochlorine pesticides in soil and water. Journal of Chromatography A, 1435, 115-124. https://doi.org/10.1016/j.chroma.2016.01.025
  • Chiou, C.S., Chen, Y.H., Chang, C.T., Chang, C.Y., Shie, J.L., Li, Y.S. (2006). Photochemical mineralisation of di-n-butyl phthalate with H2O2/Fe3+. Journal of Hazardous Materials, 135(1-3), 344-349. https://doi.org/10.1016/j.jhazmat.2005.11.072
  • Dmochowska, A., Dmochowski, D. (2011). Zawartość substancji nieorganicznych oraz zanieczyszczeń organicznych w odciekach ze składowiska odpadów komunalnych w Łubnej. Polski Przegląd Medycyny i Psychologii Lotniczej, 4(17), 371-380.
  • Dmochowski, D., Dmochowska, A., Biedugnis, S. (2015). Chromatographic Analysis of Chemical Compounds in the Leachate from Municipal Landfill, Undergoing Electrooxidation. Rocznik Ochrona Środowiska, 17(2), 1196-1206. (in Polish)
  • Dobecki, M. (2004). Ensuring the quality of chemical analyses. Publishing House of the Institute of Occupational Medicine prof. J. Nofera, Łódź.
  • Dobrzyńska, M.M., Tyrkiel, E.J., Hernik, A., Derezinska, E., Góralczyk, K., Ludwicki, J.K. (2010). The influence of di-n-butyl phthalate [DBP] on somatic cells of laboratory mice. Annals of the National Institute of Hygiene, 61(1), 13-19.
  • Duty, S.M., Silva, M.J., Barr, D.B., Brock, J.W., Ryan, L., Chen, Z., Hauser, R. (2003). Phthalate exposure and human semen parameters. Epidemiology, 14(3), 269-277.
  • Fatoki, O.S., Noma, A. (2001). Determination of phthalate esters in the aquatic environment. South African Journal of Chemistry, 54, 69-83.
  • Fatoki, O.S., Noma, A. (2002). Solid phase extraction method for selective determination of phthalate esters in the aquatic environment. Water Air and Soil Pollution, 140(1-4), 85-98.
  • Huber, L. (2007). Validation and Qualification. In: Analytical Laboratories – 2nd ed. Informa Healthcare USA, New York.
  • Jang, M., Shim, W.J., Han, G.M., Rani, M., Song, Y.K., Hong, S.H. (2016). Styrofoam debris as a source of hazardous additives for marine organisms. Environmental science & technology, 50(10), 4951-4960. https://doi.org/10.1021/acs.est.5b05485
  • Kida, M., Koszelnik, P. (2015). Environmental fate of selected micropollutants. Journal of Civil Engineering, Environment and Architecture, 62(1), 279-298. https://doi.org/10.7862/rb.2015.19
  • Kida, M., Ziembowicz, S., Pochwat, K., Koszelnik, P. (2022). Experimental and computational hazard prediction associated with reuse of recycled car tire material. Journal of Hazardous Materials, 438, 129489. https://doi.org/10.1016/j.jhazmat.2022.129489
  • Kudlek, E., Dudziak, M. (2018). Degradation pathways of pentachlorophenol and benzo(a)pyrene during heterogeneous photocatalysis. Water Science and Technology, 77(10), 2407-2414. https://doi.org/10.2166/wst.2018.192
  • Kumar, M., Sarma, D.K., Shubham, S., Kumawat, M., Verma, V., Prakash, A., Tiwari, R. (2020). Environmental endocrine-disrupting chemical exposure: role in non-communicable diseases. Frontiers in Public Health, 8, 553850. https://doi.org/10.3389/fpubh.2020.553850
  • Lee, S.K., Veeramachaneni, D.N. (2005). Subchronic exposure to low concentrations of di-n-butyl phthalate disrupts spermatogenesis in Xenopus laevis frogs. Toxicological Sciences, 84(2), 394-407. https://doi.org/10.1093/toxsci/kfi087
  • Luks-Betlej, K., Popp, P., Janoszka, B., Paschke H. (2001). Solid-phase microextraction of phthalates from water. Journal of Chromatography A, 938, 93-101. https://doi.org/10.1016/S0021-9673(01)01363-2
  • Matuszak, L. (2012). Validation of the analytical method as an aspect of ensuring food safety. PhD thesis, University of Economics, Poznań.
  • Net, S., Sempéré, R., Delmont, A., Paluselli, A., Ouddane, B. (2015). Occurrence, fate, behavior and ecotoxicological state of phthalates in different environmental matrices. Environmental Science & Technology, 49(7), 4019-4035. https://doi.org/10.1021/es505233b
  • Piątek, M., Powałek, I., Oszczudłowski, J. (2016). Application of ion chromatography and gas chromatography mass spectrometry for analysis of flavored water. Aparatura Badawcza i Dydaktyczna, 21(2), 65-70. (in Polish)
  • Pochwat, K. (2018). The use of artificial neural networks for analysing the sensitivity of a retention tank. E3S Web of Conferences. EDP Sciences, 45, 00066, 1-8. https://doi.org/10.1051/e3sconf/20184500066
  • Pochwat, K.B., Słyś, D. (2018). Application of Artificial Neural Networks in the Dimensioning of Retention Reservoir. Ecological Chemistry and Engineering S, 25(4), 605-617. https://doi.org/10.1515/eces-2018-0040
  • Popenda, A., Włodarczyk-Makuła, M. (2018). Hazard from sediments contaminated with persistent organic pollutants (POPs). Desalination and Water Treatment, 117, 318-328. https://doi.org/10.5004/dwt.2018.22529
  • Rivera-Utrilla, J., Ocampo-Pérez, R., Méndez-Díaz, J.D., Sánchez-Polo, M. (2012). Environmental impact of phthalic acid esters and their removal from water and sediments by different technologies – a review. Journal of Environmental Management, 109, 164-178. https://doi.org/10.1016/j.jenvman.2012.05.014
  • Roslev, P., Vorkamp, K., Aarup, J., Frederiksen, K., Nielsen P.H. (2007). Degradation of phthalate esters in an activated sludge wastewater treatment plant. Water Research, 41(5), 969-976. https://doi.org/10.1016/j.watres.2006.11.049
  • Smol, M., Włodarczyk-Makuła, M., Skowron-Grabowska, B. (2017). PAHs removal from municipal landfill leachate using an integrated membrane system in aspect of legal regulations. Desalination and Water Treatment, 69, 335-343. https://doi.org/10.5004/dwt.2017.20241
  • U.S. EPA. (2011). Endocrine Disruption. [https://www.epa.gov/, access: 10.05.2023].
  • Wypych, G. (2004). Handbook of Plasticizers. ChemTec Publishing, Ontario, Canada, p. 687.
  • Ziembowicz, S. (2018). The use of alternative catalysts in the processes of chemical removal of di-n-butyl phthalate from aqueous solutions. PhD Thesis, Rzeszów University of Technology.
  • Ziembowicz, S., Kida, M., Koszelnik, P. (2018). Selected EPs in the water of certain Polish lakes and rivers, E3S Web of Conferences, EDP Sciences, 49, 00136, 1-8. https://doi.org/10.1051/e3sconf/20184900136
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4bfae7da-11f9-4118-8dd1-d4e937fc0189
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.