PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Solar chargers based on new dye-based photovoltaic modules and new supercapacitors

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Electricity storage is one of the best-known methods of balancing the energy supply and demand at a given moment. The article presents an innovative solution for the construction of an electric energy storage device obtained from an innovative photovoltaic panel made of new dye-based photovoltaic modules and newly developed supercapacitors – which can be used as an emergency power source. In the paper, for the first time, we focused on the successful paring of new dye-sensitized solar cell (DSSC) with novel supercapacitors. In the first step, a microprocessor stand was constructed using Artificial Intelligence algorithms to control the parameters of the environment, as well as the solar charger composed of six DSSC cells with the dimensions of 100_100 mm and 126 CR2032 coin cells with a total capacitance of 60 F containing redox-active aqueous electrolyte. It was proven that the solar charger store enough energy to power, i.e. SOS transmitter or igniters, using a 5 V signal.
Rocznik
Strony
art. no. e146452
Opis fizyczny
Bibliogr. 13 poz., rys., tab.
Twórcy
  • Military Institute of Engineer Technology, ul. Obornicka 136, 50-961 Wrocław, Poland
  • Military Institute of Engineer Technology, ul. Obornicka 136, 50-961 Wrocław, Poland
  • Research & Development Centre for Photovoltaics, ML System S.A. Zaczernie 190G, 36-062 Zaczernie, Poland
  • Department of Physical Chemistry and Physicochemical Basis of Environmental Engineering, Institute of Environmental Engineering in Stalowa Wola, John Paul II Catholic University of Lublin, ul. Ofiar Katynia 6, 37-450 Stalowa Wola Poland
  • Faculty of Chemistry, Warsaw University, ul. Pasteura 1, 02-093 Warsaw, Poland
  • Department of Physical Chemistry and Physicochemical Basis of Environmental Engineering, Institute of Environmental Engineering in Stalowa Wola, John Paul II Catholic University of Lublin, ul. Ofiar Katynia 6, 37-450 Stalowa Wola Poland
  • Faculty of Chemistry, Warsaw University, ul. Pasteura 1, 02-093 Warsaw, Poland
  • Military Institute of Engineer Technology, ul. Obornicka 136, 50-961 Wrocław, Poland
  • Military Institute of Engineer Technology, ul. Obornicka 136, 50-961 Wrocław, Poland
Bibliografia
  • [1] I. Plebankiewicz, K.A. Bogdanowicz, and A. Iwan, “Electronic System for Charger of Supercapacitors from Solar Cells,” Polish Patent nr 239883, 2022.
  • [2] I. Plebankiewicz and W. Przybył, “Solarny Magazyn Energii – rozwiązanie oparte na komercyjnych krzemowych ogniwach słonecznych i superkondensatorach,” Przegl ˛ad Elektrotechniczny, vol. R.98, no. 1, pp. 139–142, 2022, doi: 10.15199/48.2022.01.28.
  • [3] M. Skunik-Nuckowska et al., “Iodide electrolyte-based hybrid supercapacitor for compact photo-rechargeable energy storage system utilizing silicon solar cells,” Energies, vol. 14, p. 2708, 2021, doi: 10.3390/en14092708.
  • [4] C. Lamnatou, D. Chemisana, and C. Cristofari, “Smart grids and smart technologies in relation to photovoltaics, storage systems, buildings and the environment,” Renew. Energy, vol. 185, pp. 1376–1391, 2022, doi: 10.1016/j.renene.2021.11.019.
  • [5] J.J. Moreno Escobar, O. Morales Matamoros, R. Tejeida Padilla, Lina I. Reyes, and H. Quintana Espinosa, “A Comprehensive Review on Smart Grids: Challenges and Opportunities,” Sensors, vol. 21, p. 6978, 2021, doi: 10.3390/s21216978.
  • [6] Y. Bayazıt, R. Bakış, and C. Koç, “A study on transformation of multi-purpose dams into pumped storage hydroelectric power plants by using GIS model,” Int. J. Green Energy, vol. 18, pp. 308–318, 2020, doi: 10.1080/15435075.2020.1865362.
  • [7] D. Kaczorowska et al., “A Case Study on Battery Energy Storage System in a Virtual Power Plant: Defining Charging and Discharging Characteristics,” Energies, vol. 13, p. 6670, 2020, doi: 10.3390/en13246670.
  • [8] K.P. Kampouris, V. Drosou, C. Karytsas, and M. Karagiorgas, “Energy storage systems review and case study in the residential sector,” IOP Conf. Ser.: Earth Environ. Sci., vol. 410, p. 012033, 2020, doi: 10.1088/1755-1315/410/1/012033.
  • [9] G. Lota and E. Frąckowiak, “Striking capacitance of carbon/iodide interface,” Electrochem. Commun., vol. 11, pp. 87–90, 2009, doi: doi.org/10.1016/j.elecom.2008.10.026.
  • [10] A. Gligor, C.-D. Dumitru, and H.-S. Grif, “Artificial intelligence solution for managing a photovoltaic energy production unit,” Procedia Manuf., vol. 22, p. 626–633, 2018, doi: 10.1016/j.promfg.2018.03.091.
  • [11] M. Ramnani, “Now an AI model that identifies where solar farms are located in India,” Analytics India Magazine, 2022. [Online] Available: https://analyticsindiamag.com/now-an-ai-model-that-identifies-where-solar-farms-are-located-in-india/ (accessed 10.04.2022)
  • [12] K.A. Bogdanowicz, D. Augustowski, J. Dziedzic, P. Kwaśnicki, W. Malej, and A. Iwan, “Preparation and characterization of novel polymer-based gel electrolyte for dye-sensitized solar cells based on poly(vinylidene fluoride-co-hexafluoropropylene) and poly(acrylonitrile-co-butadiene) or poly(dimethylsiloxane) bis(3-aminopropyl) copolymers,” Materials vol. 13, p. 2721, 2020, doi: 10.3390/ma13122721.
  • [13] I. Plebankiewicz and K.A. Bogdanowicz, A. Iwan, “Photo-Rechargeable Electric Energy Storage Systems Based on Silicon Solar Cells and Supercapacitor-Engineering Concept,” Energies, vol. 13, p. 3867, 2020, doi: 10.3390/en13153867.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4bf967c5-8999-43f0-bad3-3a1c76d0b5aa
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.