PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Development of a Larix principis-rupprechtii tree-ring width chronology and its climatic signals for the southern Greater Higgnan Mountains

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Forty-one living larch (Larix principis-rupprechtii) trees collected from two sampling sites in 1310–1530 m a.s.l. in the southern Greater Higgnan Mountains in the northeastern China are used to develop a regional tree-ring width chronology. The credible chronology spans 185 years from 1830 to 2014. The results of correlation analyses indicate that moisture is the main climatic factor controlling radial growth of larch trees in this mountainous area. Spatial correlation proves that the regional tree-ring width chronology contains climatic signals representative for a large area including the eastern Mongolian Plateau and Nuluerhu Mountains. A comparison between the newly developed chronology and a May–July Palmer Drought Severity Index (PDSI) reconstruction for the Ortindag Sand Land reveals similar variations, particularly in the low-frequency domain. The tree-ring records also capture a severe and sustained drying trend recorded in the 1920s across a wide area of northern China.
Wydawca
Czasopismo
Rocznik
Strony
1--9
Opis fizyczny
Bibliogr. 42 poz., rys.
Twórcy
autor
  • Institute of Desert Meteorology, China Meteorological Administration, Urumqi 830002, China
  • Key Laboratory of Tree-ring Physical and Chemical Research of China Meteorological Administration, Urumqi 830002, China
  • Key Laboratory of Tree-ring Ecology of Uigur Autonomous Region, Urumqi 830002, China
autor
  • Institute of Desert Meteorology, China Meteorological Administration, Urumqi 830002, China
  • Key Laboratory of Tree-ring Physical and Chemical Research of China Meteorological Administration, Urumqi 830002, China
  • Key Laboratory of Tree-ring Ecology of Uigur Autonomous Region, Urumqi 830002, China
autor
  • Institute of Desert Meteorology, China Meteorological Administration, Urumqi 830002, China
  • Key Laboratory of Tree-ring Physical and Chemical Research of China Meteorological Administration, Urumqi 830002, China
  • Key Laboratory of Tree-ring Ecology of Uigur Autonomous Region, Urumqi 830002, China
autor
  • Institute of Modern Forestry, Xinjiang Academy of Forestry Science, Urumqi 830000, China
autor
  • Institute of Desert Meteorology, China Meteorological Administration, Urumqi 830002, China
  • Key Laboratory of Tree-ring Physical and Chemical Research of China Meteorological Administration, Urumqi 830002, China
  • Key Laboratory of Tree-ring Ecology of Uigur Autonomous Region, Urumqi 830002, China
Bibliografia
  • 1. Büntgen U, Tegel W, Nicolussi K, McCormick M, Frank D, Trouet V, Kaplan JO, Herzig F, Heussner KU, Wanner H, Luterbacher J and Esper J, 2011. 2500 years of European climate variability and human susceptibility. Science 331: 578–582.
  • 2. Bao G, Liu Y and Linderholm HW, 2012. April– September mean maximum temperature inferred from Hailar pine (Pinus sylvestrisvar. mongolica) tree rings in the Hulunbuir region, Inner Mongolia, back to 1868 AD. Palaeogeography,Palaeoclimatology, Palaeoecology 313-314: 162-172.
  • 3. Bao G, Liu Y, Liu N and Linderholm HW, 2015. Drought variability in eastern Mongolian Plateau and its linkages to the large-scale climate forcing. Climate Dynamics 44: 717–733.
  • 4. Cai QF and Liu Y, 2013. Climatic response of Chinese pine and PDSI variability in the middle Taihang Mountains, north China since 1873. Trees–Structure and Function 27: 419–427.
  • 5. Cook ER, 1985. A time-series analysis approach to tree-ring standardization. PhD dissertation, The University of Arizona.
  • 6. Cook ER and Kairiukstis LA, 1990. Methods of dendrochronology: applications in the environmental sciences. Kluwer Academic Publishers, Boston, Massachusetts.
  • 7. Cook ER and Krusic PJ, 2005. Program ARSTAN: A Tree-Ring Standardization Program Based on Detrending and Autoregressive Time Series Modeling, with Interactive Graphics. Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York.
  • 8. D′Arrigo RD and Jacoby GC, 1991. A 1000-year record of winter precipitation from northwestern New Mexico, USA: a reconstruction from tree-rings and its relation to El Niño and the Southern Oscillation. The Holocene 1: 95–101, DOI .
  • 9. Díaz SC, Therrell MD, Stahle DW and Cleaveland MK, 2002. Chihuahua (Mexico) winter-spring precipitation reconstructed from tree-rings, 1647–1992. Climate Research 22: 237–244.
  • 10. Esper J, Cook ER and Schweingruber FH, 2002. Low-frequency signals in long tree-ring chronologies for reconstructing past temperature variability. Science 295: 2250–2253.
  • 11. Esper J, Shiyatov SG, Mazepa VS, Wilson RJS, Graybill DA and Funkhouser G, 2003. Temperature-sensitive Tien Shan tree ring chronologies show multi-centennial growth trends. Climate Dynamics 21: 699–706.
  • 12. FAO, IIASA, ISRIC, ISS-CAS and JRC, 2012. Harmonized World Soil Database(version 1.2). FAO, Rome, Italy and IIASA, Laxenburg, Austia.
  • 13. Grissino-Mayer HD, 2001. Evaluating crossdating accuracy: a manual and tutorial for the computer program COFECHA.Tree-Ring Research 57: 205–221.
  • 14. He JC, Wang LL and Shao XM, 2005. The relationships between mongolian scotch pine tree ring indices and normalized difference vegetation index in Mohe, China. Quaternary Sciences 25: 252–257 (in Chinese, with English abstract).
  • 15. Kitin P, Funada R, Sano Y, Beeckman H and Ohtani J, 1999. Variations in the lengths of fusiform cambial cells and vessel elements in Kalopanax pictus. Annals of Botany 84(5): 621–632
  • 16. Li ZH, Wang YH, Yu PT, Tong HQ, Wang YB and Liu Q, 2013. The evapotranspiration and its partition in growing season for a stand of Larix principis-rupprechtiiplantation in the semi-arid region of Liupan Mountains, NW China. Ecology and Environmental Sciences 22(2): 222–228 (in Chinese, with English abstract).
  • 17. Liang E, Liu X, Yuan Y, Qin N, Fang X, Huang L, Zhu H, Wang L and Shao X, 2006. The 1920s drought recorded by tree rings and historical documents in the semi-arid and arid areas of northern China. Climatic Change 79(3): 403–432.
  • 18. Liang EY, Shao XM, Liu HY and Eckstein D, 2007a. Tree-ring based PDSI reconstruction since AD 1842 in the Ortindag Sand Land, east Inner Mongolia. Chinese Science Bulletin 52: 2715–2721.
  • 19. Liang JP, Niu Y, Xie JS and Zhang JD, 2007b. Antioxidase activities and photosynthetic pigment contents in Larix principis-rupprechtiileaves along an altitudinal gradient. Chinese Journal of Applied Ecology 18(7): 1414–1419 (in Chinese, with English abstract).
  • 20. Liu Y, Shi JF, Shishov V, Vaganov E, Yang YK, Cai QF, Sun JY, Wang L and Djanseitov I, 2004. Reconstruction of May-July precipitation in the north Helan Mountain, Inner Mongolia since A.D. 1726 from tree-ring late-wood widths. Chinese Science Bulletin 49: 405–409.
  • 21. Liu Y, Bao G, Song HM, Cai QF and Sun JY, 2009a. Precipitation reconstruction from Hailar pine (Pinus sylvestrisvar.mongolica) tree rings in the Hailar region, Inner Mongolia, China back to 1865 AD. Palaeogeography, Palaeoclimatology,Palaeoecology 282: 81–87.
  • 22. Liu WH, Gou XH, Yang MX, Zhang Y, Fang KY, Yang T and Jin LY, 2009b. Drought reconstruction in the Qilian Mountains over the last two centuries and its implications for large-scale moisture patterns. Advances in Atmospheric Sciences 26: 621–629.
  • 23. Liu Y, Tian H, Song HM and Liang JM, 2010. Tree ring precipitation reconstruction in the Chifeng-Weichang region, China, and East Asian summer monsoon variation since A.D. 1777. Journal of Geophysical Research 115(D6): 620–631.
  • 24. Liu Y, Wang CY, Hao WJ, Song HM, Cai QF, Tian H, Sun B and Linderholm HW, 2011. Tree-ring-based annual precipitation re-construction in Kalaqin, Inner Mongolia for the last 238 years. Chinese Science Bulletin 56: 2995–3002.
  • 25. Mitchell TD and Jones PD, 2005. An improved method of constructing a database of monthly climate observations and associated highresolution grids. International Journal of Climatology 25: 693–712.
  • 26. NMIC, 2008. China Monthly Surface Climatological Database. National Meteorological Information Center, Beijin, China.
  • 27. Song HM and Liu Y, 2011. PDSI variations at Kongtong Mountain, China, inferred from a 283-year Pinus tabulaeformisring-width chronology. Journal of Geophysical Research 116: D22111.
  • 28. Speer JH, 2010. Fundamentals of Tree-ring Research. The University of Arizona Press, Tucson.
  • 29. Sun F, Yang S and Chen P, 2005. Climatic warming-drying trend in Northeastern China during the last 44 years and its effects. Chinese Journal of Ecology 24: 751–755 (in Chinese, with English abstract).
  • 30. Sun JY, Liu Y, Sun B and Wang RY, 2012a. Tree-ring based PDSI reconstruction since 1853 AD in the source of the Fenhe River Basin, Shanxi Province, China. Science in China Series D: Earth Sciences 55: 1847–1854.
  • 31. Sun Y, Wang LL, Chen J, Duan JP, Shao XM and Chen KL, 2010. Growth characteristics and response to climate change ofLarix Millertree-ring in China. Science in China Series D: Earth Sciences 53: 871–879.
  • 32. Sun Y, Wang LL, Chen J and Duan JP, 2012b. Reconstructing mean maximum temperatures of May–August from tree-ring maximum density in North Da Hinggan Mountains, China. Chinese Science Bulletin57: 2007–2014.
  • 33. Tang GL and Ren GY, 2005. Reanalysis of surface air temperature change of the last 100 years over China. Climatic and Environmental Research 10: 791–798 (in Chinese, with English abstract).
  • 34. Wang LL, Shao XM, Huang L and Liang EY, 2005. Tree-ring characteristics of Larix gmeliniiand Pinus sylvestris var.mongolicaand their response to climate in Mohe, China. Acta Phytoecologica Sinica 29: 380–385 (in Chinese, with English abstract).
  • 35. Wang Z, 2000. Phytophysiology. China Agriculture Press, Beijing (in Chinese).
  • 36. Wigley TML, Briffa KR and Jones PD, 1984. On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. Journal of Climate and Applied Meteorology 23(2): 201–213.
  • 37. Yuan YJ, Zhang TW, Wei WS, Nievergelt D, Verstege A, Yu SL, Zhang RB and Esper J, 2013. Development of tree-ring maximum latewood density chronologies for the western Tien Shan Mountains, China: Influence of detrending method and climate response. Dendrochronologia 31: 192–197.
  • 38. Zhang TW, Yuan YJ, Wei WS and Yu SL, 2009. The tree-ring chronologies from Moerdaoga in the northeast of Inner Mongolia. Journal of Arid Land Resources and Environment 23: 177–182 (in Chinese, with English abstract).
  • 39. Zhang TW, Yuan YJ, Wei WS, Yu SL, Zhang RB, Shang HM, Chen F, Fan ZA and Qin L, 2013. Tree ring based temperature reconstruction for the northern Greater Higgnan Mountains, China, since A.D. 1717. International Journal of Climatology 33: 422–429.
  • 40. Zhang TW, Yuan YJ, Wei WS, Yu SL, Zhang RB, Chen F, Shang HM and Qin L, 2014a. A tree-ring based precipitation reconstruction for the Mohe region in the northern Greater Higgnan Mountains, China, since A.D. 1724. Quaternary Research 82: 14–21.
  • 41. Zhang TW, Yuan YJ, He Q, Wei WS, Diushen M, Shang HM and Zhang RB, 2014b. Development of tree-ring width chronologies and tree-growth response to climate in the mountains surrounding the Issyk-Kul Lake, Central Asia.Dendrochronologia 32: 230–236.
  • 42. Zhang XL, Cui MX, Ma YJ, Wu T, Chen ZJ and Ding WH, 2010. Larix gmeliniitree-ring width chronology and its responses to climate change in Kuduer, Great Xing’an Mountains. Chinese Journal of Applied Ecology21: 2501–2507 (in Chinese, with English abstract).
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4bf88b92-0956-4238-ac24-ec1b709d236e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.