PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Evaluation of Backwater Flow Over Broad Crest Weir Using Matlab Simulink

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The main purpose of the construction of weirs is to raise the water level and control it in front of the weir. It is important to know the longitudinal section of the variable flow behind the weir in the open channels. A total of 30 experiments were conducted in a horizontal laboratory channel with a length of 12 m, a width of 0.5 m, and a depth of 0.45 m. The longitudinal flow section was evaluated follow a step-by-step process under the influence of five different slopes of the channel bottom with five different flow discharges (0.035, 0.028, 0.022, 0.016 and 0.012 m3/ sec), for each slope. After that, a Matlab simulation model was built in order to evaluate the longitudinal section of water surface, which is a plot of the water level along the length of the structure. The MATLAB Simulink gave more accurate results at speed that does not exceed seconds, as long mathematical equations.
Twórcy
  • Geomatics Department, Technical Engineering College, Northern Technical University, Mosul, Iraq
Bibliografia
  • 1. Al Hashimi, S., Madhloom, H. 2018. Determination of discharge coefficient for broad crested weir. Paper identification.
  • 2. Aydin, M.C. 2012. CFD simulation of free-surface flow over triangular labyrinth side weir. Advances in Engineering Software, 45(1), 159–166.
  • 3. Azimi, A.H., Rajaratnam, N. 2009. Discharge characteristics of weirs of finite crest length. Journal of Hydraulic Engineering, 135(12), 1081–1085.
  • 4. Daneshfaraz, R., Minaei, O., Abraham, J., Dadashi, S., Ghaderi, A. 2021. 3-D numerical simulation of water flow over a broad-crested weir with openings. ISH Journal of Hydraulic Engineering, 27(sup1), 88–96.
  • 5. Fulasa, B.F. 2019. Investigation on different shapes of broad-crested weirs by means of CFD. Master’s thesis, NTNU.
  • 6. Hargreaves, D.M., Morvan, H.P., Wright, N.G. 2007. Validation of the volume of fluid method for free surface calculation: the broad-crested weir. Engineering Applications of Computational Fluid Mechanics, 1(2), 136–146.
  • 7. Irzooki, R.H., Yass, M.F. 2015. Hydraulic characteristics of flow over triangular broad crested weirs. Engineering and Technology Journal, University of Technology, 33(7), 1186–1196.
  • 8. Juma, I.A., Noori, B.M. 2009. Performance improvement of broad crested weirs. Al-Rafidain Engineering, 17(2).
  • 9. Kalajdzisalihovic, H., Milasinovic, Z., Harapin, A. 2021. Developing a new weir type using the smoothed particle hydrodynamic model. Coupled Systems Mechanics, 10(6), 491.
  • 10. Madadi, M.R., Dalir, A.H., Farsadizadeh, D. 2014. Investigation of flow characteristics above trapezoidal broad-crested weirs. Flow Measurement and Instrumentation, 38, 139–148.
  • 11. Mahmoud, A.S., Mezaal, M.R., Hameed, M.R., Naje, A.S. 2022. A framework for improving urban land cover using object and pixel-based techniques via remotely sensed data. Nature Environment & Pollution Technology, 21.
  • 12. Mezaal, M.R., Pradhan, B., Shafri, H.Z.M., Mojaddadi, H., Yusoff, Z.M. 2019. Optimized hierarchical rule-based classification for differentiating shallow and deep-seated landslide using high-resolution LiDAR data. In GCEC 2017: Proceedings of the 1st Global Civil Engineering Conference, 1, 825–848. Springer Singapore.
  • 13. Ayoob, N.S., Hamad, A.M. 2022. Numerical simulation for flow over a broad-crested weir using FLOW-3D program. Civil Engineering and Architecture, 10(5), 2157–2171. doi: 10.13189/ cea.2022.100534.
  • 14. Naghavi, B., Esmaili, K., Yazdi, J., Vahid, F.K. 2011. An experimental and numerical study on hydraulic characteristics and theoretical equations of circular weirs. Canadian Journal of Civil Engineering, 38(12), 1327–1334.
  • 15. Parsaie, A., Shareef, S.J.S., Haghiabi, A.H., Irzooki, R.H., Khalaf, R.M. 2022. Numerical simulation of flow on circular crested stepped spillway. Applied Water Science, 12(9), 215.
  • 16. Sameen, M.I., Pradhan, B., Shafri, H.Z., Mezaal, M.R., bin Hamid, H. 2017. Integration of ant colony optimization and object-based analysis for LiDAR data classification. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10(5), 2055–2066.
  • 17.Taghavi, M., Ghodousi, H. 2015. Simulation of flow suspended load in weirs by using flow3D model. Civil Engineering Journal, 1(1), 37–49.
  • 18. Yuce, M.I., Al-Babely, A.A., Al-Dabbagh, M.A. 2015. Flow simulation over oblique cylindrical weirs. Canadian Journal of Civil Engineering, 42(6), 389–407.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4bf82880-9389-4f54-bacf-6ed2e6bececc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.