PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Dry and steam reforming of methane. Comparison and analysis of recently investigated catalytic materials. A short review.

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In order to produce valuable syngas, industrial processes of dry reforming of methane and steam reforming of methane must be further developed. This paper is focused on reviewing recently examined catalysts, supporting the mentioned technologies. In both processes the most popular active material choice is usually nickel, due to its good availability. On the other hand, noble metals, such as ruthenium, rhodium or platinum, provide better performance, however the solution is not cost-effective. Materials used as a support influence the catalytic activity. Oxides with basic properties, such as MgO, Al2 O3 , CeO2 , are frequently used as carriers. One of the most promising materials for reforming of methane technologies are hydrotalcites, due to adjustable composition, acid-base properties and possibility of incorporation of various metals and complexes.
Rocznik
Strony
31--37
Opis fizyczny
Bibliogr. 58 poz., tab.
Twórcy
  • AGH University of Science and Technology, Faculty of Energy and Fuels, Al. Mickiewicza 30, 30-059 Kraków, Poland
  • AGH University of Scienty and Technology, Faculty of Energy and Fuels, Al. Mickiewicza 30, 30-059 Kraków, Poland
autor
  • AGH University of Scienty and Technology, Faculty of Energy and Fuels, Al. Mickiewicza 30, 30-059 Kraków, Poland
Bibliografia
  • 1. Rostrup-Nielsen, J.R. (2004) Fuels and energy for the future: The role of catalysis Catal Rev – Sci Eng, https://doi.org/10.1081/CR-200036716.
  • 2. Turner, J.A. (2004) Sustainable hydrogen production Science (80-), https://doi.org/10.1126/science.1103197.
  • 3. Samojeden, B. (2018). The current and future trends in chemical CO2 utilization In: Contemp. Probl. Power Eng. Environ. Prot. 2017 222–226.
  • 4. Fish, J.D. & Hawn, D.C. (1987). Closed Loop Thermochemical Energy Transport Based on CO2 Reforming of Methane: Balancing the Reaction Systems J. Sol. Energy Eng. 109(3) 215, https://doi.org/10.1115/1.3268209.
  • 5. Dry, M.E. (2002). The Fischer–Tropsch process: 1950–2000 Catal Today 71(3–4) 227–241, https://doi.org/10.1016/S0920-5861(01)00453-9.
  • 6. Nguyen, T.H., Łamacz, A., Krztoń, A., Liszka, B., & Djéga-Mariadassou, G. (2016). Partial oxidation of methane over Ni0/La2O3 bifunctional catalyst III. Steady state activity of methane total oxidation, dry reforming, steam reforming and partial oxidation. Sequences of elementary steps Appl. Catal. B. Environ., https://doi.org/10.1016/j.apcatb.2015.09.016.
  • 7. Nguyen, T.H., Łamacz, A., Krztoń, A., Ura, A., Chałupka, K., Nowosielska, M., Rynkowski, J. & Djéga-Mariadassou, G. (2015). Partial oxidation of methane over Ni0/La2O3 bifunctional catalyst II: Global kinetics of methane total oxidation, dry reforming and partial oxidation Appl. Catal. B. Environ., https://doi.org/10.1016/j.apcatb.2014.10.019.
  • 8. Nguyen, T.H., Łamacz, A., Beaunier, P., Czajkowska, S., Domański, M., Krztoń, A., Van Le, T. & Djéga-Mariadassou, G. (2014). Partial oxidation of methane over bifunctional catalyst I. In situ formation of Ni0/La2O3during temperature programmed POM reaction over LaNiO3perovskite Appl. Catal. B. Environ., https://doi.org/10.1016/j.apcatb.2014.01.053.
  • 9. Nguyen, T.H., Łamacz, A., Krztoń, A. & Djéga-Mariadassou, G. (2016). Partial oxidation of methane over Ni0/La2O3 bifunctional catalyst IV: Simulation of methane total oxidation, dry reforming and partial oxidation using the Quasi-Steady State Approximation Appl. Catal. B. Environ., https://doi.org/10.1016/j.apcatb.2016.06.034.
  • 10. Ghoneim, S.A., El-Salamony, R.A. & El-Temtamy, S.A. (2016). Review on Innovative Catalytic Reforming of Natural Gas to Syngas World J Eng Technol, https://doi.org/10.4236/wjet.2016.41011.
  • 11. Rathod, V. & Bhale, P.V. (2014). Experimental investigation on biogas reforming for syngas production over an alumina based nickel catalyst Energy Procedia, https://doi.org/10.1016/j.egypro.2014.07.267.
  • 12. Buelens, L.C., Galvita, V.V., Poelman, H., Detavernier, C. & Marin, G.B. (2016). Super-dry reforming of methane intensifies CO2 utilization via le Chatelier’s principle Science (80-), https://doi.org/10.1126/science.aah7161.
  • 13. le Saché, E., Pastor-Pérez, L., Watson, D., Sepúlveda-Escribano, A. & Reina, T.R. (2018). Ni stabilised on inorganic complex structures: superior catalysts for chemical CO2recycling via dry reforming of methane Appl. Catal. B. Environ., https://doi.org/10.1016/j.apcatb.2018.05.051.
  • 14. Pappacena, A., Razzaq, R., de Leitenburg, C., Boaro, M., & Trovarelli, A. (2018). The Role of Neodymium in the Optimization of a Ni/CeO2 and Ni/CeZrO2 Methane Dry Reforming Catalyst Inorganics, https://doi.org/10.3390/inorganics6020039.
  • 15. Pakhare, D. & Spivey, J. (2014). A review of dry (CO2) reforming of methane over noble metal catalysts Chem Soc Rev, https://doi.org/10.1039/c3cs60395d.
  • 16. Littlewood, P., Xie, X., Bernicke, M., Thomas, A. & Schomäcker, R. (2015). Ni0.05Mn0.95O catalysts for the dry reforming of methane Catal Today, https://doi.org/10.1016/j.cattod.2014.07.054.
  • 17. Oyama, S.T., Hacarlioglu, P., Gu, Y., & Lee, D. (2012). Dry reforming of methane has no future for hydrogen production: Comparison with steam reforming at high pressure in standard and membrane reactors Int J Hydrogen Energy, https://doi.org/10.1016/j.ijhydene.2011.09.149.
  • 18. Ginsburg, J.M., Piña, J., El Solh, T. & De Lasa, H.I. (2005). Coke formation over a nickel catalyst under methane dry reforming conditions: Thermodynamic and kinetic models Ind. Eng. Chem. Res., https://doi.org/10.1021/ie0496333.
  • 19. Usman, M., Wan Daud, WMA. & Abbas, HF. (2015). Dry reforming of methane: Influence of process parameters -A review Renew Sustain Energy Rev., https://doi.org/10.1016/j.rser.2015.02.026.
  • 20. Luyben, W.L. (2014). Design and control of the dry methane reforming process Ind. Eng. Chem. Res., https://doi.org/10.1021/ie5023942.
  • 21. Harshini, D., Kwon, Y., Han, J., Yoon, S.P., Nam, S.W. & Lim, T.H. (2010). Suppression of carbon formation in steam reforming of methane by addition of Co into Ni/ZrO2 catalysts Korean J. Chem. Eng., https://doi.org/10.2478/s11814-010-0095-9.
  • 22. Hu, D., Gao, J., Ping, Y., Jia, L., Gunawan, P., Zhong, Z., Xu, G., Gu, F. & Su, F. (2012). Enhanced investigation of CO methanation over Ni/Al2O3 catalysts for synthetic natural gas production Ind. Eng. Chem. Res., https://doi.org/10.1021/ie300049f.
  • 23. Rostrup-Nielsen, JR. (1984). Catalytic Steam Reforming Catalysis, https://doi.org/10.1007/978-3-642-93247-2_1.
  • 24. Rostrup-Nielsen, JR. & Sehested, J. (2003). Steam Reforming for Hydrogen. The Process and the Mechanism ACS Div. Fuel. Chem. Prepr., https://doi.org/10.1021/ma0001180.
  • 25. Choi, J.S., Moon, K.I., Kim, Y.G., Lee, J.S., Kim, C.H. & Trimm, D.L. (1998). Stable carbon dioxide reforming of methane over modified Ni/Al2O3 catalysts Catal. Letters 52(1–2) 43–47, https://doi.org/10.1023/A:1019002932509.
  • 26. Wang, C., Sun, N., Zhao, N., Wei, W., Sun, Y., Sun, C., Liu, H. & Snape, CE. (2015). Coking and deactivation of a mesoporous Ni-CaO-ZrO2 catalyst in dry reforming of methane: A study under different feeding compositions Fuel, https://doi.org/10.1016/j.fuel.2014.11.097.
  • 27. Tarasov, A., Düdder, H., Mette, K., Kühl, S., Kähler, K., Schlögl, R., Muhler, M. & Behrens, M. (2014). Investigation of coking during dry reforming of methane by means of thermogravimetry Chemie-Ingenieur-Technik, https://doi.org/10.1002/cite.201400092.
  • 28. Chen, D., Lødeng, R., Anundskås, A., Olsvik, O. & Holmen, A. (2001). Deactivation during carbon dioxide reforming of methane over Ni catalyst: Microkinetic analysis Chem. Eng. Sci., https://doi.org/10.1016/S0009-2509(00)00360-2.
  • 29. Muradov, N. & Smith, F. (2008). Thermocatalytic conversion of landfill gas and biogas to alternative transportation fuels Energy and Fuels, https://doi.org/10.1021/ef8000532.
  • 30. Osazuwa, O.U., Setiabudi, H.D., Rasid, R.A. & Cheng, C.K. (2017). Syngas production via methane dry reforming: A novel application of SmCoO3 perovskite catalyst J. Nat. Gas. Sci. Eng., https://doi.org/10.1016/j.jngse.2016.11.060.
  • 31. Erdogan, B., Arbag, H. & Yasyerli, N. (2018). SBA-15 supported mesoporous Ni and Co catalysts with high coke resistance for dry reforming of methane Int J Hydrogen Energy, https://doi.org/10.1016/j.ijhydene.2017.11.127.
  • 32. Akri, M., Achak, O., Granger, P., Wang, S., Batiot-Dupeyrat, C. & Chafik, T. (2018). Autothermal reforming of model purified biogas using an extruded honeycomb monolith: A new catalyst based on nickel incorporated illite clay promoted with MgO J Clean Prod, https://doi.org/10.1016/j.jclepro.2017.09.251.
  • 33. Wei, Q., Yang, G., Gao, X., Yamane, N., Zhang, P., Liu, G. & Tsubaki, N. (2017). Ni/Silicalite-1 coating being coated on SiC foam: A tailor-made monolith catalyst for syngas production using a combined methane reforming process Chem. Eng. J., https://doi.org/10.1016/j.cej.2017.06.109.
  • 34. Chang, J.S., Park, S.E. & Chon, H. (1996). Catalytic activity and coke resistance in the carbon dioxide reforming of methane to synthesis gas over zeolite-supported Ni catalysts Appl. Catal. A Gen. https://doi.org/10.1016/0926-860X(96)00150-0.
  • 35. Estephane, J., Aouad, S., Hany, S., El Khoury, B., Gennequin, C., El Zakhem, H., El Nakat, J., Aboukaïs, A. & Abi Aad, E. (2015). CO2 reforming of methane over Ni-Co/ZSM5 catalysts. Aging and carbon deposition study Int. J. Hydrogen Energy 40(30) 9201–9208.
  • 36. González, A.R., Asencios, Y.J.O., Assaf, E.M. & Assaf, J.M. (2013). Dry reforming of methane on Ni-Mg-Al nano-spheroid oxide catalysts prepared by the sol-gel method from hydrotalcite-like precursors Appl. Surf. Sci., https://doi.org/10.1016/j.apsusc.2013.05.082.
  • 37. Dębek, R., Motak, M., Galvez, M.E., Da Costa, P. & Grzybek, T. (2017). Catalytic activity of hydrotalcite-derived catalysts in the dry reforming of methane: on the effect of Ce promotion and feed gas composition React Kinet Mech Catal, https://doi.org/10.1007/s11144-017-1167-1.
  • 38. Dębek, R., Galvez, M.E., Launay, F., Motak, M., Grzybek, T. & Da Costa, P. (2016). Low temperature dry methane reforming over Ce, Zr and CeZr promoted Ni–Mg–Al hydrotalcite-derived catalysts Int. J. Hydrogen Energy, https://doi.org/10.1016/j.ijhydene.2016.02.074.
  • 39. Dębek, R., Motak, M., Galvez, M.E., Grzybek, T. & Da Costa, P. (2018). Promotion effect of zirconia on Mg(Ni, Al) O mixed oxides derived from hydrotalcites in CO2 methane reforming Appl. Catal. B. Environ., https://doi.org/10.1016/j.apcatb.2017.06.024.
  • 40. Dębek, R., Radlik, M., Motak, M., Galvez, M.E., Turek, W., Da Costa, P. & Grzybek, T. (2015). Ni-containing Ce-promoted hydrotalcite derived materials as catalysts for methane reforming with carbon dioxide at low temperature – On the effect of basicity Catal Today, https://doi.org/10.1016/j.cattod.2015.03.017.
  • 41. Liu, H., Wierzbicki, D., Debek, R., Motak, M., Grzybek, T., Da Costa, P. & Gálvez, ME. (2016). La-promoted Nihydrotalcite-derived catalysts for dry reforming of methane at low temperatures Fuel, https://doi.org/10.1016/j.fuel.2016.05.073.
  • 42. Gao, X., Liu, G., Wei, Q., Yang, G., Masaki, M., Peng, X., Yang, R. & Tsubaki, N. (2017). Carbon nanofibers decorated SiC foam monoliths as the support of anti-sintering Ni catalyst for methane dry reforming Int. J. Hydrogen Energy, https://doi.org/10.1016/j.ijhydene.2017.05.164.
  • 43. de Souza, V.P., Costa, D., dos Santos, D., Sato, A.G. & Bueno J.M.C. (2012). Pt-promoted α-Al2O3-supported Ni catalysts: Effect of preparation conditions on oxi-reduction and catalytic properties for hydrogen production by steam reforming of methane Int J Hydrogen Energy 37(13) 9985–9993, https://doi.org/10.1016/J.IJHYDENE.2012.03.141.
  • 44. Jabbour, K., Massiani, P., Davidson, A., Casale, S. & El Hassan, N. (2017). Ordered mesoporous “one-pot” synthesized Ni-Mg(Ca)-Al2O3as effective and remarkably stable catalysts for combined steam and dry reforming of methane (CSDRM) Appl Catal B Environ, https://doi.org/10.1016/j.apcatb.2016.08.009.
  • 45. Bengaard, H.S., Nørskov, J.K., Sehested, J., Clausen, B.S., Nielsen, L.P., Molenbroek, A.M. & Rostrup-Nielsen, J.R. (2002). Steam reforming and graphite formation on Ni catalysts J. Catal., https://doi.org/10.1006/jcat.2002.3579.
  • 46. Bej, B., Pradhan, N.C. & Neogi, S. (2013). Production of hydrogen by steam reforming of methane over alumina supported nano-NiO / SiO2 catalyst Catal. Today, https://doi.org/10.1016/j.cattod.2012.04.011.
  • 47. Zhang, Y., Wang, W., Wang, Z., Zhou, X., Wang, Z. & Liu, C.J. (2015). Steam reforming of methane over Ni/SiO2 catalyst with enhanced coke resistance at low steam to methane ratio Catal. Today 256, 130–136, https://doi.org/10.1016/J.CATTOD.2015.01.016.
  • 48. Nieva, M.A., Villaverde, M.M., Monzón, A., Garetto T, F. & Marchi, A.J. (2014). Steam-methane reforming at low temperature on nickel-based catalysts Chem. Eng. J., https://doi.org/10.1016/j.cej.2013.09.030.
  • 49. Amjad, UES., Vita, A., Galletti, C., Pino, L. & Specchia, S. (2013). Comparative study on steam and oxidative steam reforming of methane with noble metal catalysts Ind. Eng. Chem. Res., https://doi.org/10.1021/ie400679h.
  • 50. Amjad, U.E.S., Gonçalves Lenzi, G., Camargo Fernandes-Machado, N.R. & Specchia, S. (2015). MgO and Nb oxides used as supports for Ru-based catalysts for the methane steam reforming reaction Catal. Today, https://doi.org/10.1016/j.cattod.2015.02.010.
  • 51. Roy, P.S., Park, N.K. & Kim, K. (2014). Metal foam-supported Pd-Rh catalyst for steam methane reforming and its application to SOFC fuel processing Int. J. Hydrogen Energy, https://doi.org/10.1016/j.ijhydene.2014.01.004.
  • 52. Hiramitsu, Y., Demura, M., Xu, Y., Yoshida, M. & Hirano, T. (2015). Catalytic properties of pure Ni honeycomb catalysts for methane steam reforming Appl. Catal. A. Gen., https://doi.org/10.1016/j.apcata.2015.09.044.
  • 53. Vita, A., Italiano, C., Ashraf, M.A., Pino, L. & Specchia, S. (2018). Syngas production by steam and oxy-steam reforming of biogas on monolith-supported CeO2-based catalysts Int. J. Hydrogen Energy, https://doi.org/10.1016/j.ijhydene.2017.11.140.
  • 54. Khani, Y., Shariatinia, Z. & Bahadoran, F. (2016). High catalytic activity and stability of ZnLaAlO4 supported Ni, Pt and Ru nanocatalysts applied in the dry, steam and combined dry-steam reforming of methane Chem. Eng. J., https://doi.org/10.1016/j.cej.2016.04.108.
  • 55. Kho, E.T., Lovell, E., Wong, R.J., Scott, J. & Amal, R. (2017). Manipulating ceria-titania binary oxide features and their impact as nickel catalyst supports for low temperature steam reforming of methane Appl. Catal. A. Gen., https://doi.org/10.1016/j.apcata.2016.11.019.
  • 56. Lim, Z.Y., Wu, C., Wang, W.G., Choy, K.L. & Yin, H. (2015). Porosity effect on ZrO2 hollow shells and hydrothermal stability for catalytic steam reforming of methane J. Mater. Chem. A., https://doi.org/10.1039/c5ta07015e.
  • 57. Hagen, J. (2015). Industrial catalysis: A practical approach Ind. Catal. A Pract. Approach., https://doi.org/10.1002/9783527684625.
  • 58. Öhlmann, G. (1999) Handbook of Heterogeneous Catalysis Zeitschrift für Phys. Chemie, https://doi.org/10.1524/zpch.1999.208.Part_1_2.274.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4bed06ce-f54f-4f17-975f-608b2b77850d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.