PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Shear behavior of two-span fiber reinforced concrete beams

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The presented study was conducted to assess the shear capacity and the mechanical behavior of fiber reinforced concrete two-span beams in a five-point bending test. Experi-mental research was focused on observing changes in the behavior of tested elements depending on the amount of shear reinforcement (stirrups) and the fiber type used. The beams had varied stirrup spacing and two sorts of fibers were used as dispersed reinforce-ment. The steel fiber content was 78.5 kg/m3 and the basalt fiber content was 5.0 kg/m3. Concrete beams without addition of fibers were also examined as reference ones. The effectiveness of both sorts of fibers as shear reinforcement was assessed on the basis of strain development and crack pattern analysis. The digital image correlation technique was used to monitor the development of cracks around the central support of beams. It was shown that fibers control the cracking process and deformations in reinforced concrete beams and they can be effectively used as additional or the only shear reinforcement. The results of shear capacity obtained in the experiment were also compared with the shear capacity calculated according to current design approaches. This analysis has shown that fibers enhance the ultimate shear strength of reinforced concrete beams.
Rocznik
Strony
1442--1457
Opis fizyczny
Bibliogr. 40 poz., rys., tab., wykr.
Twórcy
  • Bialystok University of Technology, Faculty of Civil and Environmental Engineering, Wiejska 45E, 15-351 Bialystok, Poland
  • Bialystok University of Technology, Faculty of Civil and Environmental Engineering, Wiejska 45E, 15-351 Bialystok, Poland
  • Wroclaw University of Science and Technology, Faculty of Civil Engineering, Wyb. Wyspianskiego 27, Wroclaw, Poland
Bibliografia
  • [1] A. Picazo, J.C. Galvez, M.G. Alberti, A. Enfedaque, Assessmentof the shear behaviour of polyolefin fibre reinforced concreteand verification by means of digital image correlation, Constr.Build. Mater. 181 (2018) 565–578.
  • [2] A. Brandt, Fibre reinforced cement-based (FRC) compositesafter over 40 years of development in building and civilengineering, Compos. Struct. 86 (1-3) (2008) 3–9.
  • [3] P. Serna, S. Arango, T. Ribeiro, A.M. Núñez, E. Garcia-Taengua,Structural castin-place SFRC: technology, control criteria andrecent applications in Spain, Mater. Struct. 42 (9) (2009) 1233–1246.
  • [4] J.A. Lopez, P. Serna, E. Camacho, H. Coll, J. Navarro-Gregori,First ultra-high performance fibre-reinforced concretefootbridge in Spain: design andconstruction, Struct. Eng. Int.24 (1) (2014) 101–104.
  • [5] G. Tiberti, F. Minelli, G. Plizzari, Reinforcement optimizationof fiber reinforced concrete linings for conventional tunnels,Compos. Part B: Eng. 58 (2014) 199–207.
  • [6] S.P. Shah, B.V. Rangan, Fiber reinforced concrete properties,ACI J. Proc. 68 (2) (1971) 126–135.
  • [7] Q. Chunxiang, I. Patnaikuni, Properties of high-strength steelfiber-reinforced concrete in bending, Cem. Concr. Compos. 21(1999) 73–81.
  • [8] H.H. Dinh, G.J. Parra-Montesinos, J.K. Wight, Shear behaviorof steel fibre-reinforced concrete beams without stirrupreinforcement, ACI Struct. J. 107 (2010) 597–606.
  • [9] J. Susetyo, P. Gauvreau, F.J. Vecchio, Effectiveness of steelfiber as minimum shear reinforcement, ACI Struct. J. 108(2011) 488–496.
  • [10] F. Minelli, G.A. Plizzari, On the effectiveness of steel fibers asshear reinforcement, ACI Struct. J. 3 (2013) 379–389.
  • [11] F.A. Farhat, D. Nicolaides, A. Kanellopoulos, B.L. Karihaloo,High performance fibre-reinforced cementitious composite(CARDIFRC) - Performance and application to retrofitting,Eng. Fract. Mech. 74 (2007) 151–167.
  • [12] P. Soroushian, C.D. Lee, Distribution and orientation of fibersin steel fiber reinforced concrete, ACI Mater. J. 87 (5) (1990)433–439.
  • [13] M.G. Alberti, A. Enfedaque, J.C. Gálvez, On the prediction ofthe orientation factor and fibre distribution of steel andmacro-synthetic fibres for fibre reinforced concrete, Cem.Concr. Compos. 77 (2017) 29–48.
  • [14] T.M. Borhan, Properties of glass concrete reinforced withshort basalt fibre, Mater. Des. 42 (2012) 265–271.
  • [15] J. Branston, S. Das, S.Y. Kenno, C. Taylor, Mechanicalbehaviour of basalt fibre reinforced concrete, Constr. Build.Mater. 124 (2016) 878–886.
  • [16] M. Imam, L. Vandewalle, F. Mortelmans, D. Van Gemert,Shear domain of fiber-reinforced high-strength concretebeams, Eng. Struct. 9 (1997) 738–747.
  • [17] S. Altoubat, A. Yazdanbakhsh, K. Rieder, Shear behavior ofmacro-synthetic fiber-reinforced concrete beams withoutstirrups, ACI Mater. J. 106 (2009) 380–389.
  • [18] Y.L. Voo, W.K. Poon, S.J. Foster, Shear strength of steel fiber-reinforced ultra high-performance concrete beams withoutstirrups, J. Struct. Eng. 136 (11) (2010) 1393–1400.
  • [19] A. Meda, F. Minelli, G.A. Plizzari, P. Riva, Shear behaviour ofsteel fibrereinforced concrete beams, Mater. Struct. 38 (3)(2005) 343–351.
  • [20] M.F. Ruiz, A. Muttoni, J. Sagaseta, Shear strength of concretemembers withouttransverse reinforcement: a mechanicalapproach to consistently account for sizeand strain effects,Eng. Struct. 99 (2015) 360–372.
  • [21] J.S. Lawler, T. Wilhelm, D. Zampini, S.P. Shah, Fractureprocesses of hybrid fiber-reinforced mortar, Mater. Struct.36 (2003) 197–208.
  • [22] A. Jansson, M. Flansbjer, I. Lofgren, K. Lundgren, K. Gylltoft,Experimental investigation of surface crack initiation,propagation and tension stiffening in self-compacting steel-fibre-reinforced concrete, Mater. Struct. 45 (8) (2012) 1127–1143.
  • [23] E. Bentz, F. Vecchio, M. Collins, Simplified modifiedcompression field theory for calculating shear strength ofreinforced concrete elements, ACI Struct. J. 103 (S65) (2006)614–624.
  • [24] Z.P. Bažant, Q. Yu, W. Gerstle, J. Hanson, J.W. Ju, Justificationof ACI 446 proposal forupdating ACI code provisions for sheardesign of reinforced concrete beams, ACI Struct. J. 104 (5)(2007) 601–610.
  • [25] A. Cladera, A. Marí, C. Ribas, J. Bairán, E. Oller, Predicting theshear–flexural strength of slender reinforced concrete T and Ishaped beams, Eng. Struct. 101 (2015) 386–398.
  • [26] Model Code 2010, Comité Euro-International du Béton fib(CEB-FIP), 2012.
  • [27] V. Sigrist, E. Bentz, M.F. Ruiz, S. Foster, A. Muttoni,Background to the fib Model Code 2010 shear provisions -part 1: beams and slabs, Struct. Concr. 14 (3) (2013) 195–203.
  • [28] EN 1992-1-1 Eurocode 2 - Designing concrete structures - Part1-1: General rules and rules for buildings.
  • [29] T. Mészöly, N. Randl, Shear behavior of fiber-reinforced ultra-high performance concrete beams, Eng. Struct. 168 (2018)119–127.
  • [30] C. High, H.M. Seliem, A. El-Safty, S.H. Rizkalla, Use of basaltfibers for concrete structures, Constr. Build. Mater. 96 (2015)37–46.
  • [31] B. Wei, H. Cao, S. Song, Environmental resistance andmechanical performance of basalt and glass fibers, Mater.Sci. Eng. A 527 (2010) 4708–4715.
  • [32] J. Sim, C. Park, D.Y. Moon, Characteristics of basalt fibre as astrengthening material for concrete structures, Compos. PartB Eng. 36 (2005) 504–512.
  • [33] M. Kosior-Kazberuk, J. Krassowska, Post-cracking behaviourof basalt fibre reinforced concrete, in: Proc. 6th InternationalConference on Mechanics and Materials in Design: M2D2015,2015.
  • [34] J. Krassowska, M. Kosior-Kazberuk, Failure mode in shear ofsteel fiber reinforced concrete beams, in: Proc. 8th Scientific-Technical Conference on Material Problems in CivilEngineering: MATBUD'2018, 2018.
  • [35] EN 12390-3 Concrete tests - Part 3: Compressive strength oftest specimens.
  • [36] EN 12390-5 Concrete testing - Part 5: Bending strength of testspecimens.
  • [37] EN 12390-13 Concrete tests - Part 13: Determination of thesecant elastic modulus under compression.
  • [38] EN 12390-6 Concrete tests - Part 6: Tensile splitting strengthof test specimens.
  • [39] S.Y. Alam, A. Loukili, F. Grondin, E. Roziere, Use of digitalcorrelation and acoustic emission technique to study theeffect of structural size on cracking of reinforced concrete,Eng. Fract. Mech. 143 (2015) 17–31.
  • [40] M. Hamrat, B. Boulekbache, M. Chemrouk, S. Amziane,Flexural cracking behavior of normal strength, highstrength and high strength fiber concrete beams, usingDigital Image Correlation technique, Constr. Build. Mater.106 (2016) 678–692.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4be9a07b-fa95-4620-8e3f-39e88bd1a016
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.