PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Study on constitutive model and deformation mechanism in high speed cutting Inconel718

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The nickel-based alloy Inconel718 is a multi-component complex alloy. There exists complex cutting deformation, higher cutting temperature, higher cutting force and formation of serrated chip in the machining process. However, the formation time of every saw tooth unit in serrated chip is very short. It is difficult to use traditional method to analyze the chip at any time. Simulation analysis, integrated with the experimental results, was used to study the whole process of cutting deformation. The Johnson–Cook (JC) constitutive model of Inconel718 under high speed and high strain rate is established through split Hopkinson pressure bar (SHPB) test. The finite element method was used to study the deformation process. Combining the analysis of metallographic pictures which were obtained in the cutting experiment, the plastic behavior evolution of material in the cutting zone is deeply studied to further reveal the forming mechanism of serrated chip. The results showed that the local temperature in the cutting zone increased rapidly. The appearance of thermal softening of materials led to the change of stress distribution in the cutting zone. The thermoplastic shear instability further appeared which resulted in the shear localization, subsequently leading to the uneven deformation of chip and then serrated chip formed.
Rocznik
Strony
439--452
Opis fizyczny
Bibliogr. 24 poz., rys., wykr.
Twórcy
  • School of Mechatronic Engineering, ChangChun University of Technology, ChangChun 130012, China
autor
  • School of Mechatronic Engineering, ChangChun University of Technology, ChangChun 130012, China
autor
  • School of Mechatronic Engineering, ChangChun University of Technology, ChangChun 130012, China
autor
  • School of Mechatronic Engineering, ChangChun University of Technology, ChangChun 130012, China
Bibliografia
  • [1] D.H. Zhu, X.M. Zhang, H. Ding, Tool wear characteristics In machining of nickel-based superalloys, Int. J. Mach. Tools Manuf. 64 (2013) 60–77.
  • [2] Y.H. Fan, Z.P. Hao, J.Q. Lin, Z.X. Yu, New observations on tool wear mechanism in machining Inconel 718 under water vapor + air cooling lubrication cutting conditions, J. Clean. Prod. 90 (2015) 381–387.
  • [3] V. Vijayaraghavan, A. Garg, L. Gao, R. Vijayaraghavan, G.X. Lu, A finite element based data analytics approach for modeling turning process of Inconel 718 alloys, J. Clean. Prod. 37 (2016) 1619–1627.
  • [4] P.J. Arrazola, A. Kortabarria, A. Madariaga, J.A. Esnaola, E. Fernandez, C. Cappellini, D. Ulutan, T. Ozel, On the machining induced residual stresses in IN718 nickel-based alloy: Experiments and predictions with finite element simulation, Simul. Model. Pract. Theory 41 (2014) 87–103.
  • [5] P.J. Arrazola, T. Ozel, D. Umbrello, M. Davies, I.S. Jawahir, Recent advances in modelling of metal machining processes, CIRP Ann. Manuf. Technol. 62 (2013) 695–718.
  • [6] F. Jafarian, D. Umbrello, B. Jabbaripour, Identification of new material model for machining simulation of Inconel 718 alloy and the effect of tool edge geometry on microstructure changes, Simul. Model. Pract. Theory 66 (2016) 273–284.
  • [7] F. Jafarian, M. Imaz Ciaran, D. Umbrello, P.J. Arrazola, L. Filice, H. Amirabadi, Finite element simulation of machining Inconel 718 alloy including microstructure changes, Int. J. Mech. Sci. 88 (2014) 110–121.
  • [8] B. Wang, Z. Liu, Shear localization sensitivity analysis for Johnson–Cook constitutive parameters on serrated chips in high speed machining of Ti6Al4V, Simul. Model. Pract. Theory 55 (2015) 63–76.
  • [9] S. Issler, Development of a Concept for Life Pre-diction of Blade-disconnections of Gas Turbines (Ph.D. thesis), University of Stuttgart Germany, 2002 (originally in German).
  • [10] J.J. Demange, V. Prakash, J.M. Pereira, Effects of material microstructure on blunt projectile penetration of a nickelbased super alloy, Int. J. Impact Eng. 36 (2009) 1027–1043.
  • [11] X.Y. Wang, C.Z. Huang, B. Zou, H.L. Liu, H.T. Zhu, J. Wang, Dynamic behavior and a modified Johnson–Cook constitutive model of Inconel718 at high strain rate and elevated temperature, Mater. Sci. Eng. A 580 (2013) 385–390.
  • [12] J.M. Pereira, B.A. Lerch, Effects of heat treatment on the ballistic impact properties of Inconel718 for jet engine fan containment applications, Int. J. Impact Eng. 25 (2001) 715–733.
  • [13] J. Lorentzon, N. Jarvstrat, B.L. Josefson, Modelling chip formation of alloy 718, J. Mater. Process. Technol. 209 (2009) 4645–4653.
  • [14] M.A. Dvaies, Y. Chou, C.J. Evsna, On chip morphology tool wear and cutting mechanics in finish hard turning, Ann. CIRP 45 (1996) 77–82.
  • [15] M.A. Dvaies, T.J. Buns, C.J. Evnas, On the dynamics of chip of formation inmachining hardmetals, Ann. CIRP 46 (1997) 25–30.
  • [16] G. Poulachon, A.L. Moisan, Hard turning: chip formation mechanisms and metallurgical aspects, J. Manuf. Sci. Eng. Trans. ASME 122 (2000) 406–412.
  • [17] T. Obikawa, E. Usui, Computational machining of titanium alloy-finite element modeling and a few results, J. Manuf. Sci. Eng. Trans. ASME 118 (1996) 208–215.
  • [18] H. Jiang, S. Rajiv, Prediction of chip morphology and segmentation during the machining of titanium alloys, J. Mater. Process. Technol. 150 (2004) 124–133.
  • [19] R.F. Recht, Catastrophic thermoplastic shear, J. Manuf. Sci. Eng. Trans. ASME 86 (1964) 189–193.
  • [20] R.F. Recht, A dynamic analysis of high speed machining, J. Eng. Ind. 107 (1985) 309–315.
  • [21] R. Komnaduri, T. Schroeder, On hear instability in machining nickel-iron base superalloy, J. Eng. Ind. 108 (1986) 93–100.
  • [22] D. Gao, Z.P. Hao, R.D. Han, Y.L. Chang, J.N. Muguthu, Study of cutting deformation in machining nickel-based alloy Inconel 718, Int. J. Mach. Tools Manuf. 51 (2011) 520–527.
  • [23] G.T. Gray III, Classic split-Hopkinson pressure bar testing, in: H. Kuhn, D. Medlin (Eds.), SAM Handbook, Mechanical Testing and Evaluation, vol. 8, ASM International, Materials Park, OH, 2000 462–476.
  • [24] B. Erice, F. Gálvez, A coupled elastoplastic-damage constitutive model with Lode angle dependent failure criterion, Int. J. Solids Struct. 51 (2014) 93–110.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4be31184-873d-4d06-b51f-7a83cf61e4ee
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.