PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mapping of river water quality through spatial K’luster analysis by tree edge removal

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Mapping is one of the steps that is useful for monitoring changes in water quality, planning and management, increasing public awareness, and analyzing the impact of climate change. This study aims to obtain river water quality mapping through statistical clustering methods, namely grouping observation points to points with excellent and bad quality are obtained. This research increases accuracy and efficiency in monitoring and managing water resources, thereby supporting more appropriate decision-making to preserve the environment in the area. This method is called spatial cluster analysis by tree edge removal, which is a data grouping method that considers geographical aspects between observations. Obtained secondary data from The Special Region of Yogyakarta (DIY), which was then carried out statistical analysis using spatial cluster analysis with spatial K’luster analysis (SKATER). The clustering results are then presented to the mapping. This study uses chemical oxygen demand (COD), pH, total phosphate, nitrate, and ammonia parameters at 43 river sample points in the DIY. SKATER produces 3 clusters, each consisting of 32 locations, 2 locations, and 9 locations. The results of the study showed that the cluster with the highest average COD was cluster 2, which was 29 mg/L and was located in the Winongo and Oya rivers. Likewise, phosphate, pH, and ammonia levels were higher than in other locations. The results are used as indicators for controlling pollution at these cluster points. This result is different from several similar studies that carried out clustering without considering the geographical aspects of the observations. This information is used as a reference for controlling pollution and reducing COD and other parameters at river locations. The challenge of adapting the SKATER method to different river characteristics limits research on rivers in the Yogyakarta region, and implementing the method requires technological support and expertise that do not yet fully exist in the region.
Twórcy
  • Department of Doctoral Environmental Science, Faculty of Postgraduate, Diponegoro University, Semarang 50275, Indonesia
  • Department of Electrical Engineering, Faculty of Engineering, University AKPRIND Yogyakarta 55222, Indonesia
  • Department of Doctoral Environmental Science, Faculty of Postgraduate, Diponegoro University, Semarang 50275, Indonesia
  • Department of Environmental Engineering, Faculty of Engineering, Universitas Diponegoro, Semarang 50275, Indonesia
autor
  • Department of Doctoral Environmental Science, Faculty of Postgraduate, Diponegoro University, Semarang 50275, Indonesia
  • Department of Statistics, Faculty of Science and Mathematics, Universitas Diponegoro, Semarang 50275, Indonesia
  • Department of Environmental Science, Faculty of Mathematics and Natural Sciences, Sebelas Maret University, Surakarta 57126, Indonesia
Bibliografia
  • 1. Aguilar-Torrejón, J. A., Balderas-Hernández, P., Roa- Morales, G., Barrera-Díaz, C. E., Rodríguez-Torres, I., & Torres-Blancas, T. (2023). Relationship, importance, and development of analytical techniques: COD, BOD, and, TOC in water—An overview through time. SN Applied Sciences, 5(4), 118.
  • 2. Anang, E., Tei, M., Antwi, A. B., Aduboffour, V. K., & Anang, B. (2023). Assessment of groundwater and surface water quality in a typical mining community: application of water quality indices and hierarchical cluster analyses. Journal of Water and Health, 21(7), 925–938.
  • 3. Aram, S. A., Saalidong, B. M., & Osei Lartey, P. (2021). Comparative assessment of the relationship between coliform bacteria and water geochemistry in surface and ground water systems. Plos one, 16(9), e0257715.
  • 4. Asri, D. P. B. (2023). The impact of local wisdom” Merti Code” on SDG’s goals in protecting the River Environment in Yogyakarta. International Journal of Law and Politics Studies, 5(6), 149–158.
  • 5. Assunção, R. M., Neves, M. C., Câmara, G., & da Costa Freitas, C. (2006). Efficient regionalization techniques for socio‐economic geographical units using minimum spanning trees. International Journal of Geographical Information Science, 20(7), 797–811.
  • 6. Auriga, Ramadhan, W., & Safitri, Fauziana Erlis, Rachmawati S, Muchammad Sholiqin, T. A. (2023). Dampak Tingkat Cemaran Sungai Jenes Terhadap Kualitas Air Tanah Warga di Kelurahan Joyotakan, Kecamatan Serengan, Surakarta. 21(2), 318–328. https://doi.org/10.14710/jil.21.2.318-328
  • 7. Bekti, R. D., & Rachmawati, R. F. (2014, March). Spatial cluster for clustering the influence factor of birth and death child in Bogor Regency, West Java. In AIP Conference Proceedings 1589, 1, 468–471. American Institute of Physics.
  • 8. Cech TV. (2005). Principles of Water Resources: History, Development, Management, and Policy. Ed ke-2. Hoboken:John Wiley & Sons.
  • 9. Chapra, S. C., Camacho, L. A., & McBride, G. B. (2021). Impact of global warming on dissolved oxygen and BOD assimilative capacity of the world’s rivers: modeling analysis. Water, 13(17), 2408.
  • 10. Djumanto, Namastra, P., & Ifriansyah, R. (2013). Indek Biotilik Famili Sebagai Indikator Kualitas Air Sungai Gajahwong Yogyakarta. Jurnal Fish Science, 15(1), 26–34.
  • 11. Effendi, H. (2003). Telaah Kualitas Air. Yogyakarta: Kanisius
  • 12. Indarsih, W. (2016). Kajian Kualitas Air Sungai Bedog Akibat Pembuangan Limbah Cair Sentra Industri Batik Desa Wijirejo. Majalah Geografi Indonesia, 25(1), 40–54.
  • 13. Indra Permana, D. (2013). Studi Perubahan Kualitas Air Sungai Winongo Tahun 2003 dan 2012. Jurnal Bumi Indonesia, 20, 53–62. oai:ojs.lib.geo.ugm. ac.id:article/163
  • 14. Jian, H. U., Yi, H. U., Feng-Hua, G. A. O., Zhi-Guo, C. A. O., & Zhi-Jie, Z. H. A. N. G. (2019). Design of schistosomiasis surveillance sites based on Spatial Kluster Analysis by Tree Edge Removal (SKATER) method: an exploratory study. Chinese Journal of Schistosomiasis Control, 31(4), 368.
  • 15. Komala, P. S., Nur, A., & Nazhifa, I. (2019, August). Pengaruh Parameter Lingkungan Terhadap Kandungan Senyawa Organik Danau Maninjau Sumatera Barat. In Seminar Nasional Pembangunan Wilayah dan Kota Berkelanjutan 1(1).
  • 16. Komarudin M, Hariyadi S, Kurniawan B, (2015). Analisis daya tampung beban pencemar sungai Pesanggrahan (segmen kota Depok) dengan menggunakan model numerik dan spasial. Jurnal Pengelolaan Sumberdaya Alam dan Lingkungan. 5(2), 121–132.
  • 17. Latwal, A., Rehana, S., & Rajan, K. S. (2023). Detection and mapping of water and chlorophyll-a spread using Sentinel-2 satellite imagery for water quality assessment of inland water bodies. Environmental Monitoring and Assessment, 195(11), 1304.
  • 18. Listantia, N. L. (2020). Analisis Kandungan Fosfat PO43ï€Dalam Air Sungai Secara Spektrofotometri Dengan Metode Biru-Molibdat. SainsTech Innovation Journal, 3(1), 59–65. https://doi.org/10.37824/ sij.v3i1.2020.171
  • 19. Lee, J., & Wong, D. W. S. (2001). Statistical analysis with geographic information system. Geographical Analysis, 33(3), 241–261. https://doi.org/10.1111/j.1538-4632.2001.tb00290.x
  • 20. Marlina, N., Hudori, H., & Hafidh, R. (2017). Pengaruh kekasaran saluran dan suhu air sungai pada parameter kualitas air COD, TSS di sungai Winongo menggunakan software QUAL2Kw. Jurnal Sains & Teknologi Lingkungan, 9(2), 122-133.
  • 21. Marlina, N., Hudori, & Hafidh, R. (2017). Pengaruh kekerasan saluran air dan Suhu air Sungai Winongo menggunakan Software QUAL2KW. Jurnal Sains Dan Teknologi Lingkungan, 9(2), 122–133.
  • 22. Mengue, V. P., de Freitas, M. W. D., da Silva, T. S., Fontana, D. C., & Scottá, F. C. (2020). LAND-USE and land-cover change processes in Pampa biome and relation with environmental and socioeconomic data. Applied Geography, 125, 102342.
  • 23. Novianta, M. A., Syafrudin, S., & Warsito, B. (2023). K-Means clustering for grouping rivers in DIY based on water quality parameters. JUITA: Jurnal Informatika, 11(1), 155–163.
  • 24. Prayogo, W., Marhamah, F., Fauzan, H. A., Azizah, R. N., & Va, V. (2021). Strategi Pengendalian Pencemaran Industri untuk Pengelolaan Mutu Air Sungai dan Tanah di DAS Diwak, Jawa Tengah. Jurnal Sumberdaya Alam Dan Lingkungan, 8(3), 123–132. https://doi.org/10.21776/ub.jsal.2021.008.03.4
  • 25. Rachmawati, S., Setyono, P., Firdaus Wiraatmaja, M., Helmi, R., Rafi Rahadian, M., & Erwantyo Nugroho, M. (2022). Analysis of water quality Kedung Pedhet River, Mojosongo, Surakarta. Materials Today: Proceedings, 63, S513–S519. https://doi.org/10.1016/j.matpr.2022.04.863
  • 26. Rachmawati, S., Faturahman, A. D., Restanti, A. D., Rizky, F. A., Sholiqin, M., Firmansyah, F., & Fauzi, R. P. (2023). Analysis of the Relationship between Community Behavior on Physical- Chemical Conditions of Waters in the Waterways of Debegan Village. IOP Conference Series: Earth and Environmental Science, 1190(1). https://doi. org/10.1088/1755-1315/1190/1/012045
  • 27. Reis, IA., Camara, G., R. Assuncao, R., Monteiro, A.M.V. (2007), Data-Aware Clustering for Geosensor
  • 28. Señeris, G. T. (2022). Nabaoy River Watershed potential impact to flooding using Geographic Information System remote sensing. AIMS Environmental Science, 9(3).
  • 29. Setyawan, Y., Bekti, R. D., & Isarlin, F. (2020, March). Application of SKATER and Ward’s methods in grouping Indonesian provinces based on monthly expenditure per capita of food commodity groups. In IOP Conference Series: Materials Science and Engineering 807(1), 012017. IOP Publishing.
  • 30. Suphawan, K., & Chaisee, K. (2021). Gaussian process regression for predicting water quality index: A case study on Ping River basin, Thailand. AIMS Environmental Science, 8(3).
  • 31. Tango, T. (2010). Statistical methods for disease clustering. Springer Science & Business Media.
  • 32. Yulia, I. T., Zain, I., Negara, S., Indah, S., Negari, T., & Sholiqin, M. (2022). The Influence of Community Behavior on Water Quality of the Anyar River in Surakarta City Based on Physical-Chemical Parameters. 10(October), 1–9.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4bde76cf-176a-4804-b927-f552227f40e5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.