Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this article, we define three-dimensional q-Riordan arrays and q-Riordan representations for these arrays. Also, we give four cases of infinite multiplication three-dimensional matrices of these arrays. As applications, we obtain three-dimensional q-Pascal-like matrix and its inverse matrix by Heine’s binomial formula, using combinatorial identities. Finally, we consider the generalization of three-dimensional q-Pascal-like matrix and give some identities involving q-binomial coefficients.
Wydawca
Czasopismo
Rocznik
Tom
Strony
art. no. 20240005
Opis fizyczny
Bibliogr. 20 poz.
Twórcy
autor
- Institute of Computing Science and Technology, Guangzhou University, Guangzhou 510006, China
autor
- Department of Mathematics, Bursa Uludağ University, Bursa 16059, Türkiye
autor
- Department of Mathematics, Kocaeli University, Kocaeli 41380, Türkiye
autor
- Department of Mathematics, Kocaeli University, Kocaeli 41380, Türkiye
autor
- Department of Mathematics and Natural Sciences, Prince Mohammad Bin Fahd University, P.O. Box 1664, Al Khobar 31952, Saudi Arabia
Bibliografia
- [1] L. Euler, An introduction to the analysis of the infinite, translated by John D. Blanton, Springer-Verlag, New York, 1988.
- [2] L. Carlitz, Some q-expansion formulas, Glas. Mat. 8 (1973), 205–214.
- [3] L. W. Shapiro, S. Getu, W. J. Woan, and L. C. Woodson, The Riordan group, Discrete Appl. Math. 34 (1991), 229–239, DOI: https://doi.org/10.1016/0166-218X(91)90088-E.
- [4] A. Luzón, D. Merlini, M. A. Morón, and R. Sprugnoli, Identities induced by Riordan arrays, Linear Algebra Appl. 436 (2012), no. 3, 631–647, DOI: https://doi.org/10.1016/j.laa.2011.08.007.
- [5] D. Merlini and R. Sprugnoli, A Riordan array proof of a curious identity, Integers 2 (2002), A8, DOI: https://doi.org/10.5281/zenodo.7585036.
- [6] D. Merlini and M. C. Verri, Generating trees and proper Riordan arrays, Discrete Math. 218 (2000), no. 1–3, 167–183, DOI: https://doi.org/10.1016/S0012-365X(99)00343-X.
- [7] M. Munarini, Riordan matrices and sums of harmonic numbers, Appl. Anal. Discrete Math. 5 (2011), 176–200, DOI: https://doi.org/10.2298/AADM110609014M.
- [8] G. S. Cheon and M. E. A. El-Mikkawy, Generalized harmonic numbers with Riordan arrays, J. Number Theory 128 (2008), no. 2, 413–425, DOI: https://doi.org/10.1016/j.jnt.2007.08.011.
- [9] P. Barry, Riordan Arrays: A Primer, Logic Press, Kildare, 2016.
- [10] S. Koparal, N. Ömür, and Ö. Duran, On identities involving generalized harmonic, hyperharmonic and special numbers with Riordan arrays, Spec. Matrices 9 (2021), no. 1, 22–30, DOI: https://doi.org/10.1515/spma-2020-0111.
- [11] S. W. Wuyungaowa, Sums of involving the harmonic numbers and the binomial coefficients, Amer. J. Comput. Math. 5 (2015), 96–105, DOI: https://dx.doi.org/10.4236/ajcm.2015.52008.
- [12] A. W. F. Edwards, Pascalas Arithmetical Triangle: The Story of a Mathematical Idea, Dover Publications, New York, 2019.
- [13] Z. Zhang, The linear algebra of the generalized Pascal matrix, Linear Algebra Appl. 250 (1997), 51–60, DOI: https://doi.org/10.1016/0024-3795(95)00452-1.
- [14] Z. Zhang and M. Liu, An extension of the generalized Pascal-like matrix and its algebraic properties, Linear Algebra Appl. 271 (1998), no. 1–3, 169–177, DOI: https://doi.org/10.1016/S0024-3795(97)00266-8.
- [15] T. Ernst, q-Pascal and q-Bernoulli matrices: An Umbral Approach, Uppsala University, Report 23, Uppsala, Sweden, 2008.
- [16] A. M. G. Solo, Multidimensional matrix mathematics: multidimensional matrix equality, addition, subtraction, and multiplication, part 2 of 6, Proceedings of the World Congress on Engineering, Paper presented at World Congress on Engineering, (London, U.K.), 2010, June 30–July 2, London, pp. 1829–1833.
- [17] G. S. Cheon and S. T. Jin, The group of multi-dimensional Riordan arrays, Linear Algebra Appl. 524 (2017), 263–277, DOI: https://doi.org/10.1016/j.laa.2017.03.010.
- [18] A. M. Garsia, q-analogue of the Lagrange inversion formula, Houston J. Math. 7 (1981), no. 2, 205–237.
- [19] F. Y. Baran and N. Tuğlu, q-Riordan representation, Linear Algebra Appl. 525 (2017), 105–117, DOI: https://doi.org/10.1016/j.laa.2017.03.018.
- [20] N. Tuğlu, F. Yeşil, M. Dziemianczuk, and E. G. Koçer, q-Riordan array for q-Pascal-like matrix and its inverse matrix, Turkish J. Math. 40 (2016), no. 5, 1038–1048, DOI: https://doi.org/10.3906/mat-1506-56.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4bdc5390-6067-430c-8b01-054111f24d79
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.