PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Creating a reliable zebrafish model for studying inflammation: exploring the therapeutic potential of xanthohumol

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Inflammation is the body's natural immune response to pathogens, such as viruses, bacteria, and parasites, and is closely linked to oxidative stress caused by an imbalance in reactive oxygen species (ROS) and antioxidants. Chronic inflammation can lead to diseases and cancer. Due to the side effects of synthetic anti-inflammatory drugs such as NSAIDs and corticosteroids, natural compounds such as flavonoids are gaining interest. This study aimed to validate the zebrafish (Danio rerio) as a model for studying inflammation and to compare the anti-inflammatory effects of xanthohumol with ibuprofen and quercetin. Using lipopolysaccharide (LPS) and copper sulfate (CuSO₄) to induce inflammation, zebrafish larvae provided an excellent model. The study determined the lethal doses (LD50) of several substances, with xanthohumol having an LD50 of 2.659 μg/ml, ibuprofen 15 μg/ml, and quercetin 200 μM. Exposure to xanthohumol at 2 μg/ml before LPS administration significantly improved larval survival, maintaining 80% viability compared to 25% with LPS alone. Additionally, xanthohumol reduced IL-1 levels by over twofold and increased IL-10 expression, demonstrating its anti-inflammatory effects. Xanthohumol also protected against oxidative stress induced by CuSO₄, significantly reducing cell damage compared to controls. These results highlight xanthohumol’s strong protective and anti-inflammatory properties.
Czasopismo
Rocznik
Strony
266--286
Opis fizyczny
Bibliogr. 49 poz., il. kolor., wykr.
Twórcy
  • Department of Medical Chemistry, Medical University of Lublin, Chodzki 4A, 20-093 Lublin, Poland
  • Department of Medical Chemistry, Medical University of Lublin, Chodzki 4A, 20-093 Lublin, Poland
  • School of Medicine, University of Jordan, Queen Rania St, 11947 Amman, Jordan
  • Department of Medical Chemistry, Medical University of Lublin, Chodzki 4A, 20-093 Lublin, Poland
Bibliografia
  • [1] Medzhitov, R.; Origin and physiological roles of inflammation. Nature. 2008, 24, 454(7203),428-35. DOI: 10.1038/nature07201
  • [2] Hrnčič, M. K.; Španinger, E.; Košir, I. J.; Knez, Ž.; & Bren, U.; Hop compounds: Extraction techniques, chemical analyses, antioxidative, antimicrobial, and anticarcinogenic effects. Nutrients, 2019, 11(2). DOI: 10.3390/nu11020257
  • [3] Moudgil, K. D., Venkatesha, S. H.; The anti-inflammatory and immunomodulatory activities of natural products to control autoimmune inflammation. International Journal of Molecular Sciences, 2022, 24(1). DOI: 10.3390/IJMS24010095
  • [4] Carbone, K., Gervasi, F.; An updated review of the genus Humulus: A valuable source of bioactive compounds for health and disease prevention. Plants, 2022, 11(24). DOI: 10.3390/plants11243434
  • [5] Lee, I. S., Lim, J., Gal, J., Kang, J. C., Kim, H. J., Kang, B. Y., Choi, H. J.; Anti-inflammatory activity of xanthohumol involves heme oxygenase-1 induction via NRF2-ARE signaling in microglial BV2 cells. Neurochemistry International, 2011, 58(2), 153-160. DOI: 10.1016/j.neuint.2010.11.008
  • [6] Liu, M., Hansen, P. E., Wang, G., Qiu, L., Dong, J., Yin, H., Qian, Z., Yang, M., Miao, J.; Pharmacological profile of xanthohumol, a prenylated flavonoid from hops (Humulus lupulus). Molecules, 2015, 20(1), 754-779. DOI: 10.3390/molecules20010754
  • [7] Belo, M. A. A., Oliveira, M. F., Oliveira, S. L., Aracati, M. F., Rodrigues, L. F., Costa, C. C., Conde, G., Gomes, J. M. M., Prata, M. N. L., Barra, A., Valverde, T. M., de Melo, D. C., Eto, S. F., Fernandes, D. C., Romero, M. G. M. C., Corrêa Júnior, J. D., Silva, J. O., Barros, A. L. B., Perez, A. C., Charlie-Silva, I.; Zebrafish as a model to study inflammation: A tool for drug discovery. Biomedicine and Pharmacotherapy, 2021, 144. DOI: 10.1016/j.biopha.2021.112310
  • [8] Yang, L. L., Wang, G. Q., Yang, L. M., Huang, Z. B., Zhang, W. Q., Yu, L. Z.; Endotoxin molecule lipopolysaccharide-induced zebrafish inflammation model: A novel screening method for anti-inflammatory drugs. Molecules, 2014, 19(2), 2390-2409. DOI: 10.3390/molecules19022390
  • [9] Gaetk, L. M., Chow, C. K.; Copper toxicity, oxidative stress, and antioxidant nutrients. Toxicology. 2003, 15; 189 (1-2), 147-63. DOI: 10.1016/s0300-483x(03)00159-8
  • [10] Tchounwou, P. B., Yedjou C. G., Patlolla, A.K. , Sutton D. J.; Heavy metal toxicity and the environment. Exp Suppl. 2012, 101, 133-64. doi: 10.1007/978-3-7643-8340-4_6. DOI: 10.1007/978-3-7643-8340-4_6
  • [11] Yang S., Li Y., Zhou L., Wang X., Liu L., Wu M. Copper homeostasis and cuproptosis in atherosclerosis: metabolism, mechanisms and potential therapeutic strategies. Cell Death Discovery, 2024, 10, 25.
  • [12] Gaggelli, E, Kozlowski, H, Valensin, D, Valensin, G.; Copper homeostasis and neurodegenerative disorders (Alzheimer's, prion, and Parkinson's diseases and amyotrophic lateral sclerosis). Chem Rev. 2006 106(6), 1995-2044. PMID: 16771441. DOI: 10.1021/cr040410w
  • [13] González, R., Ballester, I., López-Posadas, R., Suárez, M. D., Zarzuelo, A., Martínez-Augustin, O., & Sánchez de Medina, F. Effects of flavonoids and other polyphenols on inflammation. Critical Reviews in Food Science and Nutrition, 2011, 51(4), 331-362. DOI: doi.org/10.1080/10408390903584094
  • [14] Arulselvan, P., Fard, M. T., Tan, W. S., Gothai, S., Fakurazi, S., Norhaizan, M. E., & Kumar, S. S.; Role of antioxidants and natural products in inflammation. Oxidative Medicine and Cellular Longevity, 2016. DOI: 10.1155/2016/5276130
  • [15] Patil, K. R., Mahajan, U. B., Unger, B. S., Goyal, S. N., Belemkar, S., Surana S. J., Ojha, S., Patil, C. R.; Animal Models of Inflammation for Screening of Anti-inflammatory Drugs: Implications for the Discovery and Development of Phytopharmaceuticals. Int J Mol Sci. 2019, 20(18), 4367. DOI: 10.3390/ijms20184367
  • [16] Yihui, C., Yanfeng, G.; Inflammatory markers in patients with hypertension. Br J Hosp Med (Lond). 2023, 84(5), 1-8. DOI: 10.12968/hmed.2022.0531
  • [17] Abdulkhaleq, L. A., Assi, M. A., Abdullah, R., Zamri-Saad, M., Taufiq-Yap, Y. H., Hezmee, M. N. M; The crucial roles of inflammatory mediators in inflammation: A review. Vet World. 2018, 11(5), 627-635. DOI: 10.14202/vetworld.2018.627-635
  • [18] Zappavigna, S., Cossu, A. M., Grimaldi, A. , Bocchetti, M., Ferraro, G. A., Nicoletti, G. F., Filosa R., Caraglia M.; Anti-Inflammatory Drugs as Anticancer Agents. Int J Mol Sci. 2020, 21(7), 2605. DOI: 10.3390/ijms21072605
  • [19] Bindu, S., Mazumder, S., Bandyopadhyay, U.; Non-steroidal anti-inflammatory drugs (NSAIDs) and organ damage: A current perspective. Biochem Pharmacol. 2020, 180, 114147. DOI: 10.1016/j.bcp.2020.114147
  • [20] Gupta, S. C., Kunnumakkara, A. B., Aggarwal, S., Aggarwal, B. B.; Inflammation, a Double-Edge Sword for Cancer and Other Age-Related Diseases. Front Immunol. 2018, 9, 2160. DOI: 10.3389/fimmu.2018.02160
  • [21] Rakha A., Umar N., Rabail R., et al.; Anti-inflammatory and anti-allergic potential of dietary flavonoids: A review. Biomed Pharmacother. 2022, 156, 113945. DOI: 10.1016/j.biopha.2022.113945
  • [22] Pérez-Torres I., Castrejón-Téllez V., Soto M. E., Rubio-Ruiz M. E., Manzano-Pech L., Guarner-Lans V.; Oxidative Stress, Plant Natural Antioxidants, and Obesity. Int J Mol Sci. 2021, 22(4), 1786. doi: 10.3390/ijms22041786. DOI: 0.000.00000
  • [23] Wang Y., Sui Z., Wang M., Liu P.; Natural products in attenuating renal inflammation via inhibiting the NLRP3 inflammasome in diabetic kidney disease. Front Immunol. 2023, 14, 1196016. DOI: 10.3389/fimmu.2023.1196016
  • [24] Korpelainen, H., Pietiläinen, M.; Hop (Humulus lupulus L.): Traditional and Present Use, and Future Potential. Econ Bot. 2021, 75, 302-322. DOI: 10.3389/fimmu.2023.1196016.
  • [25] Harish V., Haque E., Śmiech M., et al.; Xanthohumol for Human Malignancies: Chemistry, Pharmacokinetics and Molecular Targets. Int J Mol Sci. 2021, 22(9), 4478. DOI: 10.3390/ijms22094478
  • [26] Dorn, C., Kraus, B., Motyl, M., Weiss, T.S., Gehrig, M., Schölmerich, J., Heilmann, J., Hellerbrand, C.; Xanthohumol, a chalcon derived from hops, inhibits hepatic inflammation and fibrosis. Mol. Nutr. Food Res., 2010, 54, S205-S213. |DOI: 10.1002/mnfr.200900314
  • [27] Vazquez-Cervantes G. I., Ortega D. R., Blanco Ayala T., et al.; Redox and Anti-Inflammatory Properties from Hop Components in Beer-Related to Neuroprotection. Nutrients. 2021,13(6), 2000. DOI: 10.3390/nu13062000
  • [28] Dorn C., Heilmann J., Hellerbrand C.; Protective effect of xanthohumol on toxin-induced liver inflammation and fibrosis. Int J Clin Exp Pathol. 2012, 5(1), 29-36.
  • [29] Chen X., Li Z., Hong H., et al.; Xanthohumol suppresses inflammation in chondrocytes and ameliorates osteoarthritis in mice. Biomed Pharmacother. 2021, 137, 111238. DOI: 10.1016/j.biopha.2021.111238
  • [30] Lv H., Liu Q., Wen Z., Feng H., Deng X., Ci X.; Xanthohumol ameliorates lipopolysaccharide (LPS)-induced acute lung injury via induction of AMPK/GSK3β-Nrf2 signal axis. Redox Biol. 2017, 12, 311-324. DOI: 10.1016/j.redox.2017.03.001
  • [31] Xie Y., Meijer A. H., Schaaf M. J. M.; Modeling Inflammation in Zebrafish for the Development of Anti-inflammatory Drugs. Front Cell Dev Biol. 2021, 8, 620984. DOI: 10.3389/fcell.2020.620984
  • [32] Bambino K., Chu J.; Zebrafish in Toxicology and Environmental Health. Curr Top Dev Biol. 2017, 124, 331-367. DOI: 10.1016/bs.ctdb.2016.10.007
  • [33] Zhang P., Liu N., Xue M., et al.; Anti-Inflammatory and Antioxidant Properties of Squalene in Copper Sulfate-Induced Inflammation in Zebrafish (Danio rerio). Int J Mol Sci. 2023, 24(10), 8518. DOI: 10.3390/ijms24108518
  • [34] Zanandrea R., Bonan C. D., Campos M. M.; Zebrafish as a model for inflammation and drug discovery. Drug Discov Today. 2020, 25(12), 2201-2211. DOI: 10.1016/j.drudis.2020.09.036
  • [35] Xia H., Chen H., Cheng X., et al.; Zebrafish: an efficient vertebrate model for understanding role of gut microbiota. Mol Med. 2022, 28(1), 161. DOI: 10.1186/s10020-022-00579-1
  • [36] Forn-Cuní G., Varela M., Pereiro P., Novoa B., Figueras A.; Conserved gene regulation during acute inflammation between zebrafish and mammals. Sci Rep. 2017, 7, 41905. DOI: 10.1038/srep41905.
  • [37] Yang L., Zhou X., Huang W., et al.; Protective Effect of Phillyrin on Lethal LPS-Induced Neutrophil Inflammation in Zebrafish. Cell Physiol Biochem. 2017, 43(5), 2074-2087. DOI: 10.1159/000484192
  • [38] Sun Q., Zhu J., Cao F., Chen F.; Anti-inflammatory properties of extracts from Chimonanthus nitens Oliv. leaf. PLoS One. 2017, 12(7), e0181094. DOI: 10.1371/journal.pone.0181094
  • [39] Pereira T. C., Campos M. M., Bogo M. R.; Copper toxicology, oxidative stress and inflammation using zebrafish as experimental model. J Appl Toxicol. 2016, 36(7), 876-885. DOI: 10.1002/jat.3303
  • [40] Reed E., Lutsenko S., Bandmann O.; Animal models of Wilson disease. J Neurochem. 2018, 146(4), 356-373. DOI: 10.1111/jnc.14323
  • [41] Wang ZG, Ying XG, Gao P, et al. Anti-Inflammatory Activity of a Peptide from Skipjack (Katsuwonus pelamis). Mar Drugs. 2019, 17(10), 582. doi: 10.3390/md17100582.
  • [42] Guo D. L., Chen J. F., Tan L., et al.; Terpene Glycosides from Sanguisorba officinalis and Their Anti-Inflammatory Effects. Molecules. 2019, 24(16), 2906. DOI: 10.3390/molecules24162906
  • [43] Zhang C., Li C., Jia X., et al.; In Vitro and In Vivo Anti-Inflammatory Effects of Polyphyllin VII through Downregulating MAPK and NF-κB Pathways. Molecules. 2019, 24(5), 875. DOI: 10.3390/molecules24050875
  • [44] Nguyen T. H., Le H. D., Kim T. N. T., et al.; Anti-Inflammatory and Antioxidant Properties of the Ethanol Extract of Clerodendrum Cyrtophyllum Turcz in Copper Sulfate-Induced Inflammation in Zebrafish. Antioxidants (Basel). 2020, 9(3), 192. DOI: 10.3390/antiox9030192
  • [45] Zhang M., Zhang R., Zheng T., Chen Z. , Ji G., Peng F., Wang W.: Xanthohumol attenuated inflammation and ECM degradationby Mediating HO-1/C/EBPβ Pathway in osteoarthritis chondrocytes. Front. Pharmacol. 2021, 12:680585. DOI: 10.3389/fphar.2021.680585
  • [46] Niederau C., Bhargava S., Schneider-Kramman R., Jankowski J., Craveiro R.B., Wolf M.: Xanthohumol exerts anti-inflammatory effects in an in vitro model of mechanically stimulated cementoblasts. Sci Rep. 2022, 12(1):14970. DOI: 10.1038/s41598-022-19220-6
  • [47] Lv H., Liu Q., Wen Z., Feng H., Deng X., Ci X.: Xanthohumol ameliorates lipopolysaccharide (LPS)-induced acute lung injury via induction of AMPK/GSK3β-Nrf2 signal axis. Redox Biol. 2017, 12:311-324. DOI: 10.1016/j.redox.2017.03.001
  • [48] Kołodziejczak, A., Dziedzic, M., Algiert-Zielińska, B., Mucha, P., Rotsztejn, H.: A Novel Look at Mechanisms and Applications of Xanthohumol (XN) in Dermatology and Cosmetology. Int. J. Mol. Sci. 2024, 25:11938. DOI: 10.3390/ijms252211938
  • [49] Bradley R., Langley B.O., Ryan J.J. et al.; Xanthohumol microbiome and signature in healthy adults (the XMaS trial): a phase I triple-masked, placebo-controlled clinical trial. Trials 2020, 21, 835. DOI: 10.1186/s13063-020-04769-2
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4bd83104-ab6e-4d51-a0b9-f83d37f87870
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.