PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Thermal treatment effect on the particle size distribution of alkaline earth metals hydroxyapatite

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Hydroxyapatites of certain alkaline earth metals were synthesised, and their phase composition was determined using X-ray phase analysis. Thermal modification of the studied compounds was performed at temperatures not exceeding 800°C. The laser diffraction method determined the size distribution of the samples subjected to thermal treatment. It was found that the mean particle size ranged from 5,48±1,28 to 126,71±3,68 μm. It has been demonstrated that particle aggregation and fragmentation processes are possible depending on the synthesised compounds' qualitative and quantitative phase composition and the modification temperature.
Czasopismo
Rocznik
Strony
309--318
Opis fizyczny
Bibliogr. 22 poz., wykr.
Twórcy
  • Yurii Fedkovych Chernivtsi National University, Chernivtsi, Ukraine
  • Bukovinian State Medical University, Chernivtsi, Ukraine
Bibliografia
  • [1] Regonini, D.; Jaroenworaluck, A.; Stevens, R. & Bowen, C.R.; Effect of heat treatment on the properties and structure of TiO2 nanotubes: Phase composition and chemical composition. Surface and Interface Analysis, 2010 42 (3), 139-144. DOI: 10.1002/sia.3183
  • [2] Salman, O.O.; Gammer, C.; Chaubey, A.K.; Eckert, J.; Scudino, S.; Effect of heat treatment on microstructure and mechanical properties of 316L steel synthesized by selective laser melting. Materials Science and Engineering: A, 2019, 748, 205-212. DOI: 10.1016/j.msea.2019.01.110
  • [3] Shunmuga Priya, R.; Priyanka Chaudhary; Ranjith Kumar, E. et al.; Effect of heat treatment on structural, morphological, dielectric and magnetic properties of Mg-Zn ferrite nanoparticles. Ceramics International, 2022, 48 (11), 15243-15251. DOI: 10.1016/j.ceramint.2022.02.056
  • [4] Sans, J.; Arnau, M.; Sanz, V.; Turon, P.; Alemán, C.; Hydroxyapatite-based biphasic catalysts with plasticity properties and its potential in carbon dioxide fixation. Chemical Engineering Journal, 2022, 433(2) 133512, DOI: 10.1016/j.cej.2021.133512
  • [5] Fiume E.; Magnaterra G., Rahdar A.; Verné E.; Baino F.; Hydroxyapatite for Biomedical Applications: A Short Overview. Ceramics 2021, 4 (4), 542-563. DOI: 10.3390/ceramics4040039
  • [6] De Lima, C.O.; de Oliveira, A.L.M.; Chantelle, L.; Silva Filho, E.C.; Jaber, M.; Fonseca, M.G.; Zn-doped mesoporous hydroxyapatites and their antimicrobial properties. Colloids and Surfaces B: Biointerfaces, 2021, 198, 111471. DOI: 10.1016/j.colsurfb.2020.111471
  • [7] Shi, H.; Zhou, Z.; Li, W.; Fan, Y.; Li, Z.; Wei, J.; Hydroxyapatite Based Materials for Bone Tissue Engineering: A Brief and Comprehensive Introduction. Crystals, 2021, 11 (2), 149. DOI: 10.3390/cryst11020149
  • [8] Lett, J. A.; Sagadevan, S.; Fatimah, I.; Hoque, E.; Lokanathan, Y. et al.; Recent advances in natural polymer-based hydroxyapatite scaffolds: Properties and applications. European Polymer Journal, 2021, 148, 110360 DOI: 10.1016/j.eurpolymj.2021.110360
  • [9] Lara-Ochoa, S.; Ortega-Lara, W.; Guerrero-Beltrán, CE.; Hydroxyapatite Nanoparticles in Drug Delivery: Physicochemistry and Applications. Pharmaceutics. 2021, 13 (10), 1642. DOI: 10.3390/pharmaceutics13101642
  • [10] Wagner, M.; Hess, T.; Zakowiecki, D.; Studies on the pH-Dependent Solubility of Various Grades of Calcium Phosphate-based Pharmaceutical Excipients. Journal of Pharmaceutical Sciences, 2022 111 (6), 1749-1760. DOI: 10.1016/j.xphs.2021.12.005
  • [11] Carella, F.; Degli Esposti, L.; Adamiano, A.; Iafisco, M.; The Use of Calcium Phosphates in Cosmetics, State of the Art and Future Perspectives. Materials 2021, 14, 6398. DOI: 10.3390/ma14216398
  • [12] Brazdis, R.I.; Fierascu, I.; Avramescu, S.M.; Fierascu, R.C.; Recent Progress in the Application of Hydroxyapatite for the Adsorption of Heavy Metals from Water Matrices. Materials 2021, 14, 6898. DOI: 10.3390/ma14226898
  • [13] Pu'ad, N.A.S.M.; Haq, R.H.A.; Noh, H.M.; Abdullah, H.Z.; Idris, M.I.; Lee, T.C.; Synthesis method of hydroxyapatite: A review, Materials Today: Proceedings, 2020, 29 (1), 233-239. DOI: 10.1016/j.matpr.2020.05.536
  • [14] Agbeboh, N.I.; Oladele, I.O.; Daramola, O.O.; Adediran, A.A. et al.; Environmentally sustainable processes for the synthesis of hydroxyapatite. Heliyon. 2020, 6 (4), e03765. DOI: 10.1016/j.heliyon.2020.e03765
  • [15] Bee, S.-L.; Hamid, Z.A.A; Hydroxyapatite derived from food industry bio-wastes: Syntheses, properties and its potential multifunctional applications. Ceramics International, 2020, 46 (11), 17149-17175. DOI:10.1016/j.ceramint.2020.04.103
  • [16] Abdelraof, M.; Farag, M.M.; Al-Rashidy, Z.M. et al.; Green Synthesis of Bioactive Hydroxyapatite/Cellulose Composites from Food Industrial Wastes. J Inorg Organomet Polym, 2022, 32, 4614-4626. DOI: 10.21203/rs.3.rs-1670361/v1
  • [17] Dinda, G.P.; Shin, J.; Mazumder, J.; Pulsed laser deposition of hydroxyapatite thin films on Ti-6Al-4V: Effect of heat treatment on structure and properties. Acta Biomaterialia, 2009, 5 (5), 1821-1830. DOI: 10.1016/j.actbio.2009.01.027
  • [18] Liu, Q.; Matinlinna, J. P.; Chen, Zh.; Ning, Ch. et al.; Effect of thermal treatment on carbonated hydroxyapatite: Morphology, composition, crystal characteristics and solubility. Ceramics International, 2015, 41 (5), 6149-6157. DOI: 10.1016/j.ceramint.2014.11.062
  • [19] Fukada, M.; Chhetri, T.; Suresh, A.; Upendran, A.; Afrasiabi, Z.; Size and Morphology-Mediated Antiproliferative Activity of Hydroxyapatite Nanoparticles in Human Breast Cancer Cells. Journal of Nanotechnology, 2023, 1-8. DOI: 10.1155/2023/5381158
  • [20] Oh, S.Ch.; Xu, J.; Tran, D.T.; Liu, B.; Liu, D.; Effects of Controlled Crystalline Surface of Hydroxyapatite on Methane Oxidation Reactions. ACS Catal., 2018, 8 (5), 4493-4507. DOI: 10.1021/acscatal.7b04011
  • [21] Huda, S. A.; Keshk, A. A.; Ghareeb, R. Y.; Ibrahim, A. A. et. al.; Physico-chemical and biological responses for hydroxyapatite/ZnO/graphene oxide nanocomposite for biomedical utilization. Materials Chemistry and Physics, 2022, 283, 125988. DOI: 10.1016/j.matchemphys.2022.125988
  • [22] Tripković, D.; Wang, J.; Küngas, R. et. al.; Thermally Controlled Activation and Passivation of Surface Chemistry and Oxygen-Exchange Kinetics on a Perovskite Oxide Chemistry of Materials , 2022, 34 (4), 1722-1736. DOI: 10.1021/acs.chemmater.1c03901 [23] Narasaraju, T.S.B.; Phebe, D.E; Some physico-chemical aspects of hydroxylapatite. Journal of Materials Science, 1996, 31, 1-21. DOI: 10.1007/BF00355120
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4bd65d42-8dba-4376-af4c-46075f12be4a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.