Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Hydroxyapatites of certain alkaline earth metals were synthesised, and their phase composition was determined using X-ray phase analysis. Thermal modification of the studied compounds was performed at temperatures not exceeding 800°C. The laser diffraction method determined the size distribution of the samples subjected to thermal treatment. It was found that the mean particle size ranged from 5,48±1,28 to 126,71±3,68 μm. It has been demonstrated that particle aggregation and fragmentation processes are possible depending on the synthesised compounds' qualitative and quantitative phase composition and the modification temperature.
Wydawca
Czasopismo
Rocznik
Tom
Strony
309--318
Opis fizyczny
Bibliogr. 22 poz., wykr.
Twórcy
autor
- Yurii Fedkovych Chernivtsi National University, Chernivtsi, Ukraine
autor
- Bukovinian State Medical University, Chernivtsi, Ukraine
Bibliografia
- [1] Regonini, D.; Jaroenworaluck, A.; Stevens, R. & Bowen, C.R.; Effect of heat treatment on the properties and structure of TiO2 nanotubes: Phase composition and chemical composition. Surface and Interface Analysis, 2010 42 (3), 139-144. DOI: 10.1002/sia.3183
- [2] Salman, O.O.; Gammer, C.; Chaubey, A.K.; Eckert, J.; Scudino, S.; Effect of heat treatment on microstructure and mechanical properties of 316L steel synthesized by selective laser melting. Materials Science and Engineering: A, 2019, 748, 205-212. DOI: 10.1016/j.msea.2019.01.110
- [3] Shunmuga Priya, R.; Priyanka Chaudhary; Ranjith Kumar, E. et al.; Effect of heat treatment on structural, morphological, dielectric and magnetic properties of Mg-Zn ferrite nanoparticles. Ceramics International, 2022, 48 (11), 15243-15251. DOI: 10.1016/j.ceramint.2022.02.056
- [4] Sans, J.; Arnau, M.; Sanz, V.; Turon, P.; Alemán, C.; Hydroxyapatite-based biphasic catalysts with plasticity properties and its potential in carbon dioxide fixation. Chemical Engineering Journal, 2022, 433(2) 133512, DOI: 10.1016/j.cej.2021.133512
- [5] Fiume E.; Magnaterra G., Rahdar A.; Verné E.; Baino F.; Hydroxyapatite for Biomedical Applications: A Short Overview. Ceramics 2021, 4 (4), 542-563. DOI: 10.3390/ceramics4040039
- [6] De Lima, C.O.; de Oliveira, A.L.M.; Chantelle, L.; Silva Filho, E.C.; Jaber, M.; Fonseca, M.G.; Zn-doped mesoporous hydroxyapatites and their antimicrobial properties. Colloids and Surfaces B: Biointerfaces, 2021, 198, 111471. DOI: 10.1016/j.colsurfb.2020.111471
- [7] Shi, H.; Zhou, Z.; Li, W.; Fan, Y.; Li, Z.; Wei, J.; Hydroxyapatite Based Materials for Bone Tissue Engineering: A Brief and Comprehensive Introduction. Crystals, 2021, 11 (2), 149. DOI: 10.3390/cryst11020149
- [8] Lett, J. A.; Sagadevan, S.; Fatimah, I.; Hoque, E.; Lokanathan, Y. et al.; Recent advances in natural polymer-based hydroxyapatite scaffolds: Properties and applications. European Polymer Journal, 2021, 148, 110360 DOI: 10.1016/j.eurpolymj.2021.110360
- [9] Lara-Ochoa, S.; Ortega-Lara, W.; Guerrero-Beltrán, CE.; Hydroxyapatite Nanoparticles in Drug Delivery: Physicochemistry and Applications. Pharmaceutics. 2021, 13 (10), 1642. DOI: 10.3390/pharmaceutics13101642
- [10] Wagner, M.; Hess, T.; Zakowiecki, D.; Studies on the pH-Dependent Solubility of Various Grades of Calcium Phosphate-based Pharmaceutical Excipients. Journal of Pharmaceutical Sciences, 2022 111 (6), 1749-1760. DOI: 10.1016/j.xphs.2021.12.005
- [11] Carella, F.; Degli Esposti, L.; Adamiano, A.; Iafisco, M.; The Use of Calcium Phosphates in Cosmetics, State of the Art and Future Perspectives. Materials 2021, 14, 6398. DOI: 10.3390/ma14216398
- [12] Brazdis, R.I.; Fierascu, I.; Avramescu, S.M.; Fierascu, R.C.; Recent Progress in the Application of Hydroxyapatite for the Adsorption of Heavy Metals from Water Matrices. Materials 2021, 14, 6898. DOI: 10.3390/ma14226898
- [13] Pu'ad, N.A.S.M.; Haq, R.H.A.; Noh, H.M.; Abdullah, H.Z.; Idris, M.I.; Lee, T.C.; Synthesis method of hydroxyapatite: A review, Materials Today: Proceedings, 2020, 29 (1), 233-239. DOI: 10.1016/j.matpr.2020.05.536
- [14] Agbeboh, N.I.; Oladele, I.O.; Daramola, O.O.; Adediran, A.A. et al.; Environmentally sustainable processes for the synthesis of hydroxyapatite. Heliyon. 2020, 6 (4), e03765. DOI: 10.1016/j.heliyon.2020.e03765
- [15] Bee, S.-L.; Hamid, Z.A.A; Hydroxyapatite derived from food industry bio-wastes: Syntheses, properties and its potential multifunctional applications. Ceramics International, 2020, 46 (11), 17149-17175. DOI:10.1016/j.ceramint.2020.04.103
- [16] Abdelraof, M.; Farag, M.M.; Al-Rashidy, Z.M. et al.; Green Synthesis of Bioactive Hydroxyapatite/Cellulose Composites from Food Industrial Wastes. J Inorg Organomet Polym, 2022, 32, 4614-4626. DOI: 10.21203/rs.3.rs-1670361/v1
- [17] Dinda, G.P.; Shin, J.; Mazumder, J.; Pulsed laser deposition of hydroxyapatite thin films on Ti-6Al-4V: Effect of heat treatment on structure and properties. Acta Biomaterialia, 2009, 5 (5), 1821-1830. DOI: 10.1016/j.actbio.2009.01.027
- [18] Liu, Q.; Matinlinna, J. P.; Chen, Zh.; Ning, Ch. et al.; Effect of thermal treatment on carbonated hydroxyapatite: Morphology, composition, crystal characteristics and solubility. Ceramics International, 2015, 41 (5), 6149-6157. DOI: 10.1016/j.ceramint.2014.11.062
- [19] Fukada, M.; Chhetri, T.; Suresh, A.; Upendran, A.; Afrasiabi, Z.; Size and Morphology-Mediated Antiproliferative Activity of Hydroxyapatite Nanoparticles in Human Breast Cancer Cells. Journal of Nanotechnology, 2023, 1-8. DOI: 10.1155/2023/5381158
- [20] Oh, S.Ch.; Xu, J.; Tran, D.T.; Liu, B.; Liu, D.; Effects of Controlled Crystalline Surface of Hydroxyapatite on Methane Oxidation Reactions. ACS Catal., 2018, 8 (5), 4493-4507. DOI: 10.1021/acscatal.7b04011
- [21] Huda, S. A.; Keshk, A. A.; Ghareeb, R. Y.; Ibrahim, A. A. et. al.; Physico-chemical and biological responses for hydroxyapatite/ZnO/graphene oxide nanocomposite for biomedical utilization. Materials Chemistry and Physics, 2022, 283, 125988. DOI: 10.1016/j.matchemphys.2022.125988
- [22] Tripković, D.; Wang, J.; Küngas, R. et. al.; Thermally Controlled Activation and Passivation of Surface Chemistry and Oxygen-Exchange Kinetics on a Perovskite Oxide Chemistry of Materials , 2022, 34 (4), 1722-1736. DOI: 10.1021/acs.chemmater.1c03901 [23] Narasaraju, T.S.B.; Phebe, D.E; Some physico-chemical aspects of hydroxylapatite. Journal of Materials Science, 1996, 31, 1-21. DOI: 10.1007/BF00355120
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4bd65d42-8dba-4376-af4c-46075f12be4a