Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
DOI
Warianty tytułu
Języki publikacji
Abstrakty
The article presents a zero-dimensional mathematical model of a tubular fuel cell and its verification on four experiments. Despite the fact that fuel cells are still rarely used in commercial applications, their use has become increasingly more common. Computational Flow Mechanics codes allow to predict basic parameters of a cell such as current, voltage, combustion composition, exhaust temperature, etc. Precise models are particularly important for a complex energy system, where fuel cells cooperate with gas, gas-steam cycles or ORCs and their thermodynamic parameters affect those systems. The proposed model employs extended Nernst equation to determine the fuel cell voltage and steadystate shifting reaction equilibrium to calculate the exhaust composition. Additionally, the reaction of methane reforming and the electrochemical reaction of hydrogen and oxygen have been implemented into the model. The numerical simulation results were compared with available experiment results and the differences, with the exception of the Tomlin experiment, are below 5%. It has been proven that the increase in current density lowers the electrical efficiency of SOFCs, hence fuel cells typically work at low current density, with a corresponding efficiency of 45–50% and with a low emission level (zero emissions in case of hydrogen combustion).
Czasopismo
Rocznik
Tom
Strony
113–--128
Opis fizyczny
Bibliogr. 50 poz., rys.
Twórcy
autor
- Institute of Fluid Flow Machinery, Polish Academy of Sciences, Fiszera 14 St., Gdańsk, 80-231, Poland
autor
- Institute of Fluid Flow Machinery, Polish Academy of Sciences, Fiszera 14 St., Gdańsk, 80-231, Poland
- ENERGA SA, Grunwaldzka 472 St., 80-309 Gdańsk, Poland
autor
- Institute of Fluid Flow Machinery, Polish Academy of Sciences, Fiszera 14 St., Gdańsk, 80-231, Poland
autor
- Institute of Fluid Flow Machinery, Polish Academy of Sciences, Fiszera 14 St., Gdańsk, 80-231, Poland
autor
- Institute of Fluid Flow Machinery, Polish Academy of Sciences, Fiszera 14 St., Gdańsk, 80-231, Poland
Bibliografia
- 1. Akkaya A.V., 2007. Electrochemical model for performance analysis of a tubular SOFC. Int. J. Energy Res., 31, 79–98. DOI: 10.1002/er.1238.
- 2. Al-Masri A., Peksen M., Blum L., Stolten D., 2014. A 3D CFD model for predicting the temperature distribution in a full scale APU SOFC short stack under transient operating conditions. Appl. Energy, 135, 539–547. DOI: 10.1016/j.apenergy.2014.08.052.
- 3. Aydın O., Nakajima H., Kitahara T., 2016. Reliability of the numerical SOFC models for estimating the spatial current and temperature variations. Int. J. Hydrogen Energy, 41, 15311–15324. DOI: 10.1016/j.ijhydene.2016.06.194.
- 4. Badur J., Lema´nski M., 2005. Solid Oxide Fuel Cell (SOFC) with an internal reforming. Chem. Process Eng., 26, 157–172 (in Polish).
- 5. Badur J., Karcz M., Lema´nski M., 2011. On the mass and momentum transport in the Navier–Stokes slip layer. Microfluid. Nanofluid., 11, 439 – 449. DOI: 10.1007/s10404-011-0809-2.
- 6. Badur J., Ziółkowski P., Zakrzewski W., Sławi´nski D., Banaszkiewicz M., Kaczmarczyk O., Kornet S., Ziółkowski P.J., 2013. On the surface vis impressa caused by a fluid-solid contact. In: Pietraszkiewicz W., Górski J. (Eds.), Shell Structures: Theory and Applications. Volume 3. CRC Press, London, 53–56. DOI: 10.1201/b15684- 11.
- 7. Badur J., Ziółkowski P.J. Ziółkowski P., 2015. On the angular velocity slip in nano flows. Microfluid. Nanofluid., 19, 191–198. DOI: 10.1007/s10404-015-1564-6.
- 8. Badur J., Ziółkowski P., Kornet S., Stajnke M., Bryk M., Bana´s K., Ziółkowski P.J., 2017. The effort of the steam turbine caused by a flood wave load. AIP Conf. Proc., 1822, 020001. DOI: 10.1063/1.4977675.
- 9. Bharadwaj A., Archer D.H., Rubin E.S., 2005. Modeling the performance of a tubular solid oxide fuel cell. J. Fuel Cell Sci. Technol., 2, 38–44. DOI: 10.1115/1.1842781.
- 10. Blaise M., Feidt M., Maillet D., 2015. Optimization of the changing phase fluid in a Carnot type engine for th recovery of a given waste heat source. Entropy, 17, 5503-5521. DOI: 10.3390/e17085503.
- 11. Bove R., Lunghi P., Sammes N.M., 2005. SOFC mathematic model for systems simulations. Part one: from a micro-detailed to macro-black-box model. Int. J. Hydrogen Energy, 30, 181–187. DOI: 10.1016/j.ijhydene 2004.04.008.
- 12. Campanari S., 2001. Thermodynamic model and parametric analysis of a tubular SOFC module. J. Power Sources 92, 26-34. DOI: 10.1016/S0378-7753(00)00494-8.
- 13. Campanari S., Iora P., 2004. Definition and sensitivity analysis of a finite volume SOFC model for a tubular cel geometry. J. Power Sources, 132, 113–126. DOI: 10.1016/j.jpowsour.2004.01.043.
- 14. Celik S., Ibrahimoglu B., Toros S., Mat M.D., 2014. Three dimensional stress analysis of solid oxide fuel cel anode micro structure. Int. J. Hydrogen Energy, 39, 19119–19131. DOI: 10.1016/j.ijhydene.2014.09.110.
- 15. Chan S.H., Ho H.K., Tian Y., 2003. Multi–level modeling of SOFC-gas turbine hybrid system. Int. J. Hydrogen Energy, 28, 889–900. DOI: 10.1016/S0360-3199(02)00160-X.
- 16. Choudharya T., Sahub M., Sanjayc, 2017. CFD Modeling of SOFC cogeneration system for building application. Energy Procedia, 109, 361–368. DOI: 10.1016/j.egypro.2017.03.087.
- 17. D’Andrea G., Gandiglio M., Lanzini A., Santarelli M., 2017. Dynamic model with experimental validation of a biogas-fed SOFC plant. Energy Convers. Manage., 135, 21–34. DOI: 10.1016/j.enconman.2016.12.063.
- 18. Feidt M., 2017. Finite physical dimensions optimal thermodynamics 1. Fundamentals. ISTE Press /Elsevier, London.
- 19. Hauck M., Herrmann S., Spliethoff H., 2017. Simulation of a reversible SOFC with Aspen Plus. Int. J. Hydrogen Energy, 42, 10329–10340. DOI: 10.1016/j.ijhydene.2017.01.189.
- 20. Hirano A., Suzuki M., Ipponmatsu M., 1992. Evaluation of a new Solid Oxide Fuel Cell system by nonisothermal modeling. J. Electrochem. Soc., 139, 2744–2751. DOI: 10.1149/1.2068973.
- 21. Hyrzyński R., Karcz M., Lema´nski M., Lewandowski K., Nojek S., 2013. Complementarity of wind and photovoltaic power generation in conditions similar to Polish. Acta Energetica, 4, 14–21. DOI: 10.12736/issn.2300- 3022.2013402.
- 22. Karcz M., 2007. Performance of tubular fuel cell with an internal methane reforming. Chem. Process Eng., 28, 307–321.
- 23. Karcz M., 2009. From 0D to 1D modeling of tubular Solid Oxide Fuel Cell. Energy Convers. Manage., 50, 2307– 2315. DOI:10.1016/j.enconman.2009.05.007.
- 24. Karcz M., Kowalczyk S., Badur J., 2010. On the influence of geometric microstructural properties of porous materials on the modeling of a tubular fuel cell. Chem. Process Eng., 31, 489–503.
- 25. Lazzaretto A., Toffolo A., Zanon F., 2004. Parameter setting for a tubular SOFC simulation model. J. Energy Res. Technol., 126, 40–46. DOI: 10.1115/1.1653752.
- 26. Lee J.-J., Moon H., Park H.-G., Yoon D.I., Hyun S.-H., 2010. Applications of nano-composite materials for improving the performance of anode-supported electrolytes of SOFCs. Int. J. Hydrogen Energy, 35, 738–744. DOI: 10.1016/j.ijhydene.2009.10.089.
- 27. Lemański M., 2007. Analysis of power cycles with fuel cell and gas-steam turbine. PhD Dissertation IFFM PAS, Gda´nsk (in Polish).
- 28. Lemański M., Badur J., 2004. Parametrical analysis of a tubular pressurized SOFC. Archives of thermodynamics, 25,(1), 53–72.
- 29. Lemański M., Karcz M., 2008. Performance of lignite-syngas operated tubular Solid Oxide Fuel Cell. Chem. Process Eng., 29, 233–248.
- 30. Lewandowski T., Ochrymiuk T., Czerwi´nska J., 2011. Modeling of heat transfer in microchannel gas flow. J. Heat Transfer, 133, 022401–1. DOI: 10.1115/1.4002438.
- 31. Li P.W., Chyu M.K., 2005. Electrochemical and transport phenomena in solid oxide fuel cells. J. Heat Transfer, 127, 1344–1362. DOI: 10.1115/1.2098828.
- 32. Li P.W., Suzuki K., 2004. Numerical modeling and performance study of a tubular SOFC. J. Electrochem. Soc., 151, (4), 548–557. DOI: 10.1149/1.1647569.
- 33. Magistri L., Bozzo R., Costamagna P., Massardo A.F., 2004. Simplified versus detailed solid oxide fuel cell reactor models and influence on the simulation of the design point performance of hybrid systems. J. Eng. Gas Turbines Power, 126, 516–523. DOI: 10.1115/1.1719029.
- 34. Massardo A.F., Lubelli F., 2000. Internal reforming Solid Oxide Fuel Cell – gas turbine combined cycles IRSOFCGT. Part A: Cell model and cycle thermodynamic analysis. J. Eng. Gas Turbines Power, 122, 27–35. DOI: 10.1115/1.483187.
- 35. Milewski J., Badyda K., Miller A., 2010. Modelling the influence of fuel composition on Solid Oxide Fuel Cell by using the advanced mathematical model. Rynek Energii, 88, 159–163.
- 36. Milewski J., ´Swiercz T., Badyda K., Miller A., Dmowski A., Biczel A., 2010. The control strategy for a molten carbonate fuel cell hybrid system. Int. J. Hydrogen Energy, 35, 2997–3000. DOI: 10.1016/j.ijhydene.2009.06.040.
- 37. Park S.H., Lee Y.D., Ahn K.Y., 2014. Performance analysis of an SOFC/HCCI engine hybrid system: System simulation and thermo-economic comparison. Int. J. Hydrogen Energy, 39, 1799–1810. DOI: 10.1016/j.ijhydene. 2013.10.171.
- 38. Pianko-Oprych P., Kasilova E., Jaworski Z., 2014. CFD analysis of heat transfer in a microtubular solid oxide fuel cell stack. Chem. Process Eng., 35, 293–304. DOI: 10.2478/cpe-2014-0022.
- 39. Rokni M., 2017. Addressing fuel recycling in solid oxide fuel cell systems fed by alternative fuels. Energy, 137, 1013–1025. DOI: 10.1016/j.energy.2017.03.082.
- 40. San B., Zhou P., Clealand D., 2010. Dynamic modeling of tubular SOFC for marine power system. J. Mar. Sci. Appl., 9, 231–240. DOI: 10.1007/s11804-010-1001-x.
- 41. Schluckner C., Suboti´c V., Lawlor V., Hochenauer C., 2014. Three-dimensional numerical and experimental investigation of an industrial-sized SOFC fueled by diesel reformat – Part I: Creation of a base model for further carbon deposition modeling. Int. J. Hydrogen Energy, 39, 19102–19118. DOI: 10.1016/j.ijhydene.2014.09.108.
- 42. Shen S., Ni M., 2015. 2D segment model for a solid oxide fuel cell with a mixed ionic and electronic conductor as electrolyte. Int. J. Hydrogen Energy, 40, 5160–5168. DOI: 10.1016/j.ijhydene.2015.02.074.
- 43. Sieniutycz S., Jeżowski J., 2009. Energy optimization in process systems. Ltd., Oxford.
- 44. Singhal S.C., 2000. Advances in solid oxide fuel cell technology. Solid State Ionics, 135, 305–313. DOI: 10.1016/S0167-2738(00)00452-5.
- 45. Singhal S.C., Kendall K., 2004. High-temperature Solid Oxide Fuel Cells: Fundamentals, design and applications. Elsevier, Oxford.
- 46. Stambouli A.B., Traversa E., 2002. Solid oxide fuel cells (SOFCs): A review of an environmentally clean and efficient source of energy. Renewable Sustainable Energy Rev., 6, 433–455. DOI: 10.1016/S1364-0321(02)00014- X.
- 47. Vakouftsi E., Marnellos G.E., Athanasiou C., Coutelieris F., 2011. CFD modeling of a biogas fuelled SOFC. Solid State Ionics, 192, 458–463. DOI:10.1016/j.ssi.2010.05.051. Zhang Z., Yue D., Yang G., Chen J., Zheng Y., Miao H., Wang W., Yuan J., Huang N., 2015. Three-dimensional CFD modeling of transport phenomena in multi-channel anode-supported planar SOFCs. Int. J. Heat Mass Transfer, 84, 942–954. DOI: 10.1016/j.ijheatmasstransfer.2015.01.097.
- 48. Ziółkowski P., Lema´nski M., Badur J., Nastałek L., 2012. Power augmentation of PGE Gorzow’s gas turbine by steam injection – thermodynamic overview. Rynek Energii, 98, 161–167.
- 49. Ziółkowski P., Badur J., 2014. Navier number and transition to turbulence. J. Phys. Conf. Ser., 530, 012035. DOI: 10.1088/1742-6596/530/1/012035.
- 50. Ziółkowski P. Kowalczyk T., Kornet S., Badur J., 2017. On low-grade waste heat utilization from a supercritical steam power plant using an ORC-bottoming cycle coupled with two sources of heat. Energy Convers. Manage., 146, 158–173. DOI: 10.1016/j.enconman.2017.05.028.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4bd39d04-61b9-496b-aacd-4a0844e05e3a