Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Fault input channels represent a major challenge for observer design for fault estimation. Most works in this field assume that faults enter in such a way that the transfer functions between these faults and a number of measured outputs are strictly positive real (SPR), that is, the observer matching condition is satisfied. This paper presents a systematic approach to adaptive observer design for joint estimation of the state and faults when the SPR requirement is not verified. The proposed method deals with a class of Lipschitz nonlinear systems subjected to piecewise constant multiplicative faults. The novelty of the proposed approach is that it uses a rank condition similar to the observer matching condition to construct the adaptation law used to obtain fault estimates. The problem of finding the adaptive observer matrices is formulated as a Linear Matrix Inequality (LMI) optimization problem. The proposed scheme is tested on the nonlinear model of a single link flexible joint robot system.
Czasopismo
Rocznik
Tom
Strony
245--259
Opis fizyczny
Bibliogr. 24 poz., wykr., wzory
Twórcy
autor
- LAJ, Faculty of Science and Technology, University of Jijel BP 98 Ouled Aissa 18000, Jijel, Algeria
autor
- LCP, Departement of Electrical Engineering, ENP, Avenue Hassan Badi, BP 182, El-harrach, Algiers, Algeria
autor
- LAJ, Faculty of Science and Technology, University of Jijel BP 98 Ouled Aissa 18000, Jijel, Algeria
Bibliografia
- [1] G. Besancon: Parameter/fault estimation in nonlinear systems and adaptive observers. In Nonlinear Observers and Applications. Springer, 2007, pages 211-222.
- [2] W. Chen and M. Saif: Observer-based strategies for actuator fault detection, isolation and estimation for certain class of uncertain nonlinear systems. Control Theory & Applications, IET, 1(6), (2007), 1672-1680.
- [3] Y. M. Cho and R. Rajamani: A systematic approach to adaptive observer synthesis for nonlinear systems. IEEE Trans. Automatic Control, 42(4), (1997), 534-537.
- [4] M. Corless and J. Tu: State and input estimation for a class of uncertain systems. Automatica, 34(6), (1998), 757-764.
- [5] S. X. Ding: Model-based fault diagnosis techniques: design schemes, algorithms, and tools. Springer, 2008.
- [6] C. Edwards, S. K. Spurgeon and R. J. Patton: Sliding mode observers for fault detection and isolation. Automatica, 36(4), (2000), 541-553.
- [7] P. Frank and X. Ding: Survey of robust residual generation and evaluation methods in observer-based fault detection systems. J. of process control, 7(6), (1997), 403-424.
- [8] C. Gao and G. Duan: Robust adaptive fault estimation for a class of nonlinear systems subject to multiplicative faults. Circuits, Systems, and Signal Processing, 31(6), (2012), 2035-2046.
- [9] C. Gao Q. Zhao and G. Duan: Robust actuator fault diagnosis scheme for satellite attitude control systems. J. of the Franklin Institute, 350(9), (2013), 2560-2580.
- [10] B. Jiang and F. N. Chowdhury: Parameter fault detection and estimation of a class of nonlinear systems using observers. J. of the Franklin Institute, 342(7), (2005), 725-736.
- [11] B. Jiang, J. L. Wang and Y. C. Soh: An adaptive technique for robust diagnosis of faults with independent effects on system outputs. Int. J. of Control, 75(11), (2002), 792-802.
- [12] R. Raoufi, H. Marquez and A. Zinober: Sliding mode observers for uncertain nonlinear Lipschitz systems with fault estimation synthesis. Int. J. of Robust and Nonlinear Control, 20(16), (2010), 1785-1801.
- [13] M. Shahriari-Kahksehi, F. Sheikholeslam and J. Askari: Adaptive fault detection and estimation scheme for a class of uncertain nonlinear systems. Nonlinear Dynamics, 79(4), (2015), 2623-2637.
- [14] J.-J. E. Slotine and W. Li: Applied nonlinear control. Prentice hall New Jersey, 1991.
- [15] Ffl. N. Stamnes, O. M. Aamo and G.-O. Kaasa: Redesign of adaptive observers for improved parameter identification in nonlinear systems. Automatica, 47(2), (2011), 403-410.
- [16] C. P. Tan and C. Edwards: Sliding mode observers for detection and reconstruction of sensor faults. Automatica, 38(10), (2002), 1815-1821.
- [17] K. Veluvol and Y. Soh: Fault reconstruction and state estimation with sliding mode observers for lipschitz non-linear systems. IET Control Theory & Applications, 5(11), (2011), 1255-1263.
- [18] H. Wang and S. Daley: Actuator fault diagnosis: an adaptive observer-based technique. IEEE Trans. on Automatic Control, 41(7), (1996), 1073-1078.
- [19] A. Xu and Q. Zhang: Nonlinear system fault diagnosis based on adaptive estimation. Automatica, 40(7), (2004), 1181-1193.
- [20] X.-G. Yan and C. Edwards: Nonlinear robust fault reconstruction and estimation using a sliding mode observer. Automatica, 43(9), (2007), 1605-1614.
- [21] K. Zhang, B. Jiang and V. Cocquempot: Adaptive observer-based fast fault estimation. Int. J. of Control Automation and Systems, 6(3), (2008), 320-326.
- [22] Z. Zhao, W.-F. Xie, H. Hong and Y. Zhang: A disturbance-decoupled adaptive observer and its application to faulty parameters estimation of a hydraulically driven elevator. Int. J. of Adaptive Control and Signal Processing, 25(6), (2011), 519-534.
- [23] F. Zhu and F. Cen: Full-order observer-based actuator fault detection and reduced-order observer-based fault reconstruction for a class of uncertain nonlinear systems. J. of Process Control, 20(10), (2010), 1141-1149.
- [24] J. Zhu and K. Khayati: LMI-based adaptive observers for nonlinear systems. Int. J. of Mechanical Engineering and Mechatronics, 1(2), (2012), 50-60.
Uwagi
EN
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4bd394be-e812-4ff2-b9a4-838c8a39ff19