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The paper is [ocussed on the influence oj the shape oj the resonator upon the phase
and amplitudes oj harmonie components oj the nonlinear standing wave in order to reduce
the nonlinear effects. An one-dimensional model equation.was developed to analyze the
nonlinear standing waves. Ij the harmonics are not frequency coincident with the modes
oj a resonaior then we can observe the suppression oj the nonlinear eJJects. The degree oj
dissonance is influenced by the dispersive effects. Therejore this contribution is dedicated
to the study oj the dispersive eJJectson the behaviour the nonlinear standing waves

INTRODUCTION

This paper deals with the problem of finite-amplitude acoustic waves in confined ge-
ometries if one take into account the phase velocity dispersion caused by a boundary layer.
Renewed interest in nonlinear standing waves has been stimulated by developments in
acoustic compressors, thermoacoustic engines and refrigerators, etc. which store energy in
the form of an acoustic standing wave in a resonant cavity.
When a standing wave is driven to high amplitud e in an acoustic resonator, nonlinear ef-
fects couple energy from low- to high-frequency modes, ultimately resulting in shock wave
formation and heightened dissipation. These nonlinear effects can be suppressed with the
use a of dissonant resonance, in which modal frequencies are not integer multiples of fun-
damental mode frequency. This method of suppression enable to store energy in the form
of an acoustic standing wave in a resonant cavity more effectively,see [2]. For theoretical
prediction of the waveformwithin an arbitrary shaped resonator, which is filled a dispersive
medium, model question were derived.
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1. DISPERSlON EFFECTS

In a nonlinear medium the waves interact with each other, giving rise to harmonics
and waves at combination frequencies. In the case of weak nonlinearity the most efficient
energy exchange between various spectral components of the field is observed when the
synchronism conditions are satisfied.
When deseribing such processes in acoustics certain difficulties arise that are associated
with lack of dispersion. In this case one can seldom deal with twa- or three-wave interaction,
as the synchronism conditions are simultaneously satisfied at many frequencies.
The process of nonlinear distortion of the profile on an initially harmonie wave can be
teated as the interaction of a large number of synchronously propagating harmonics.
In more general cases, provided that quadratic nonlinearity is the most significant, a wave
triplet may be considered as "basie" for interactions, i.e. a triad of waves with frequencies
W1,2,3 and wave vectors k1,2,3 for which the following resonance conditions are satisfied:

(1)

fu the absence of dispersion, when ki = w./c, the resonance relations (1) will be fulfilled
only for collinearly propagating waves, when all ki are parallel. Under this restriction, how-
ever, these equalities hold true for triads of any harmonics with frequencies nw provided
n is the same for all waves. Futhermore, cascade processes can easily arise in which, for
exarnple, a wave with frequency W3 gives birth to a new one with frequency W4 = W3 +WIJ

and so on. All this not only renders the problem more complicated but, which is more
important, changes the physical results: energy transfer toward the higher wave numbers,
into the small-scale part of spectrum, leads to a nonlinear damping and at the same time
to saturation effects; this is exactly the case of discontinuity formation.
Along with this, the losses due to higher harmonics may frequently be avoided by intro-
ducing phase velocity dispersion, or selective losses. Many applications are connected with
interactions within a bounded space region.

2. MODEL EQUATION

When waves are excited in a bounded system, or resonator, then provided the latter is
of high quality, the oscillation amplitude in it appears many times higher than that of the
exciting source, which favours the development of the mentioned nonlinear effects.
If we consider the one-dimensional acoustic wave field in a resonator of arbitrary axisym-
metric shape, we can derive the fol1owing model equation (see [1], [2]):

(PI{) !!... (81{))2 'Y-1 !!... (81{) )2 2V2B20 8~1{) da 81{)_
f)t2 + f)t 8x + 2c5 f)t f)t + ax + r {)t~8x + x dt + a8x -

b (fJ31{) d2a) <?o 8 (281{))
Po~ {)t3 + x dt2 + r2 8x r 8x . (2)

Here I{) is the velocity potential, t is time, Po correspond to the equilibrium state of the
medium, a(t) is the acceleration of the resonator and r is the radius, which is a function
ofx

r = r(x) (3)
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and x is a coordinate along the resonator.
The coefficient of sound diffusity b is given by this formula

(4)

where 'fi and ( are coefficients of shear and bulk viscosity, K, is the heat conductivity
coefficient, The coefficient B is

(5)

where Pr is PrandtI number, 'Y= eplcv, ep and Cv are the specific heats at constant pres-
sure and volurne. The fractional derivative of order 3/2 represents this integrodifferential
operator (see l?])

a~cp _!rl ~ jt acp(t',x,r = ~) ~
l - 8 rr+u �8t28x 7r z =oo at' vt - t'

(6)

We can assume that the entire resonator is oscillated aIong its axis by an external force
with the acceIeration a(t) = Ao sin(wot) and for the soIution of model equation (2) it is
necessary take into account these boundary conditions

8cp Ia (x,t) = O,
x x=o

(7)

acp Ia(x, t) = O,
X x=L

(8)

where L is the length of the resonator and Wo is the angular frequency of the lowest mode
of a resonator. In case that standing waves are excited by a piston, loeated at x = L then
we can boundary eondition write in the form ([3], [5]):

8cp I8x (z, t) x=o = O, (9)

(10)

All of these equations are written in the eoordinate system that is moving with the res-
onator body, with exeeption of the ease when standing waves are excited by the piston.
There are different variants of phase veIocitydispersion in aeoustics, for instanee the disper-
sion connected with reIaxing fluids, gas bubbIes in liquids, boundary layers or the presence
of lateral boundaries (in nodispersive media), see [4]. Further we will foeus on the only of
the mentioned variants, namely the boundary layer. The model equation (2) incłudes this
marmer of dispersion.
The phase veIocity CF of plane sound waves in axisymetrical waveguide if one take into
account the boundary layer, we can write as

CF= l+~'
ry'w

(11)
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Figure l: The dependenceof the phase velocityon frequency.

We can see from equation (11) how the phase velocity depends on frequency. This
dependence is shown in the figure l for B = 3.10-4 ms-1/2, Ho = 0.01 m and Co = 345
ms-l. It is elear that the wave number k also depends on frequency and for this reason
boundary layer effects influence a degree of dissonance.
If we assume a cylindrical resonator (r = Ho), then for given the homogeneous boundary
conditions (7) and (8) we can get the following eigenfrequencies

nCoIn = 2L' n = l, 2, 3, 0'0
(12)

The eigenfrequencies of this resonator are shifted if the boundary layer dispersion is taken
into account. We can write this relation between eigenfrequencies for the dispersive and
nondispersive case

(13)

It is evident from equation (13) that the sound velocity dispersion may prevent the cumula-
tive energy transfer to higher harmonics because there are differences between frequencies
of harmonics and eigenfrequencies. The resonance conditions can be satisfied only for se--
lected triads because the difference 6.ln is dependent on frequency. However, the efficiency
of interaction between them will be higher.

We can see from the figure 2 and 3 that the boundary layer significantly infl.uencesthe
form of sound waves, especially due to the dispersion. The disperslon make the asymmetry
of the primary symmetrical waves; the peak is rounded while the trough remains sharp.

CONCLUSION

The problem of dispersion due to the boundary layer is studied in this paper, The model
equation was derived for the analyze of behaviour of nonlinear standing waves in resonators
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Figure 2: The influence ofthe boundary layer dispersionon the form ofwave when the excitation
by vibrating force is weak.
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Figure 3: The influence of the boundary layer dispersion on the form of wave when the excitation
by vibrating force is strong.
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of arbitrary axisymmetric shapes. If we take into account boundary layer effects, we can
observe the change of the wave form. Because the phase velocity CF depends on frequency,
we can observe that resonance conditions are not satisfied for higher harmonics of standing
waves. It is elear, on the base of numerical solutions that it is necessary take into account
boundary layer effects for description of nonlinear standing waves.
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