PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Assessment of the Applicability of Aluminum Alloy Welding Processes during the Prefabrication of Ship Structures Based on the Multi-Index Method

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The purpose of the paper is to evaluate the processes of welding aluminum alloys in terms of their applicability to the process of prefabrication of ship structures. The prefabrication process requires solving a number of problems related to the welding processes used (e.g. the problem of welding incompatibilities, deformations). Therefore, the key issue is to choose the right welding process, which is complex and difficult. It requires analysis of the process considering many points of view (e.g. technological, economic, security) in order to maximize the objectivity of the choice. Therefore, an attempt at a comprehensive view requires the formulation of a set of accurate evaluation criteria. The multi-indicator expert assessment presented in the article makes it possible to make such a choice. Currently used methods of welding aluminum alloys, both those from the group of conventional and innovative methods, were assessed. As a result of the analysis, the so-called technological hierarchy that allows to rank the assessed processes in terms of their suitability in the process of prefabrication of ship structures.
Twórcy
  • Faculty of Maritime Technology and Transport, West Pomeranian University of Technology in Szczecin, al. Piastów 41, 70-065, Szczecin, Poland
  • Faculty of Maritime Technology and Transport, West Pomeranian University of Technology in Szczecin, al. Piastów 41, 70-065, Szczecin, Poland
autor
  • Alumare Sp. z o. o., ul. Portowa 16, 72-600, Świnoujście, Poland
Bibliografia
  • 1. Ashby M., Shercliff H., Cebon D. Materials engineering, science, processing and design. 2nd Edition. Butterworth-Heinemann Elsevier, Oxford, 2010.
  • 2. Mazzolani F.M. Aluminium Alloy Structures (second edition), E & FN SPON, an imprint of Chapman & Hall, London, 1994.
  • 3. Anderson T. New developments within the AluminumShipbuilding Industry, Svetsaren 2003; 58(1): 3–5.
  • 4. Mathers G. The welding aluminum and its alloys. Woodhead Publishing Ltd. Cambridge, UK, 2002.
  • 5. Irving B. Welding the four most popular aluminum alloys. Welding Journal 1994; 73(2): 51–55.
  • 6. Rading G.O., Shamsuzzoha M., Berry J.T. A modelfor HAS hardness profile in Al-Li-X alloys: application to the Al-Li-Cu Alloy 2095. Welding journal1998; 77(9): 382–387.
  • 7. Costanza G., Crupi V., Guglielmino E., Sili A.,Tata, M.E. Metallurgical characterization of an explosion welded aluminum/steel joint. Metallurgia Italiana 2016; 108(11): 17–22.
  • 8. Costanza G., Tata M.E., Cioccari D. Explosion welding: process evolution and parameters optimization.Materials Science Forum 2018; 941: 1558–1563.
  • 9. Janaki Ram G.D., Mitra T.K., Raju M.K., Sundaresan S. Use of inoculants to refine weld solidification structure and improve weldability in type 209 Al-Li alloy. Materials Science and Engineering A 2000; 276(1–2): 48–57.
  • 10. Noga P., Richert M., Węglowski M.S. The influence of welding method on microstructure and mechanical properties of aluminum alloys joints. Metallurgy and Foundry Engineering 2019; 45(2): 43–50.
  • 11. Ion J.C. Laser beam welding of wrought aluminum alloys. Science and Technology of Welding an Joining 2000; 2.
  • 12. Pilarczyk J., Banasik M., Dworak J., Stano S. Spawanie hybrydowe z wykorzystaniem wiązki laserowej i łuku elektrycznego. Hybrid welding with theuse of a laser beam and an electric arc (in Polish).Przegląd Spawalnictwa 2007; 10: 44–48.
  • 13. Kuryło P., Nagórny M. Wybrane problemy automatyzacji i robotyzacji procesu spawania w konstrukcjach wielkogabarytowych. Selected problems of automation and robotization of the welding process in large-size structures (in Polish). Pomiary Automatyka Robotyka 2012; 2: 132–136.
  • 14. Jiang Z., Hua X., Huang L., Wu D., Li F., Zhang Y. Double-sided hybrid laser-MIG welding plus MIG welding of 30-mm-thick aluminium alloy. The International Journal of Advanced Manufacturing Technology 2018; 97: 903–913.
  • 15. Restecka M. Struktura zatrudnienia a ekonomia w robotyzacji procesów spawalniczych. Employment structure and economy in robotization of welding processes (in Polish). Przegląd Spawalnictwa 2015; 87(5): 80–84.
  • 16. Azmi M.H., Hasnol M.Z., Zaharuddin M.F.A., Sharif S., Rhee S. Effect of tool pin profile on friction stir welding of dissimilar materials AA5083 and AA7075 aluminium alloy. Archives of Metallurgy and Materials 2022; 67(2): 465–470.
  • 17. Mohan D.G., Tomków J., Gopi S. Induction assisted hybrid friction stir welding of dissimilar materials AA5052 aluminium alloy and X12Cr13 stainless steel. Advances in Materials Science 2021; 21(3): 17–30.
  • 18. Sasikumar A., Gopi S., Mohan D.G. Prediction of filler added friction stir welding parameters fo improving corrosion resistance of dissimilar aluminium alloys 5052 and 6082 joints. Advances in Materials Science 2022; 22(3): 79–95.
  • 19. Senthil S.M., Nathan S.R., Parameshwaran R., Kumar M.B. Comparative study on mechanical performances of circular and flat geometry welds infriction stir welding of aluminium alloy. Archives of Metallurgy and Materials 2021; 66(3): 881–886.
  • 20. Koprivica A., Bajić D., Sibalić N., Vukcević M. Analysis of welding of aluminium alloy AA6082-T6 by TIG, MIG and FSW processes from technological and economic aspect. Machines. Technologies. Materials 2020; 5: 194–198.
  • 21. Olabode M., Kah P., Martikainen J. Aluminium alloys welding processes: Challenges, joint types and process selection. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 2013; 227(8): 1129–1137.
  • 22. Mathers G. The welding of aluminum and its alloys. 1st Edition. Woodhead Publishing Ltd., Cambrige, 2002.
  • 23. Klimpel A.: Spawanie, zgrzewanie i cięcie metali. Welding, pressure welding and cutting of metals (in Polish). Wydawnictwa Naukowo-Techniczne, Warszawa 1999.
  • 24. Pilarczyk J., Pilarczyk J. Spawanie i napawanie elektryczne metali. Welding and electric surfacing of metals (in Polish). Wydanie drugie uzupełnione, „Śląsk” Spółka z o.o., Katowice 1996.
  • 25. Li Y., Zou W., Lee B., Babkin A., Chang Y. Research progress of aluminum alloy welding technology. The International Journal of AdvancedManufacturing Technology 2020; 109: 1207–1218.
  • 26. Jenney C.L., O’Brien A., ed.: Welding Science and Technology of Welding Handbook. 9th ed., American Welding Society, Miami 2001.
  • 27. Larsson L.O., Palmquist N. High quality aluminium welding – a key factor in future car body production. Svedsaren, 2000; 2.
  • 28. Sadahiro K., Honda S., Miyta S., Sho Y., Sawaguchi N., Kikuchi K. Robotic welding system for shipbuilding. Kebelco Technology Review 2018; 36: 17–22.
  • 29. Kuo T.Y., Lin H.C. Effect of pulse level of Nd-YAG laser on tensile properties and formability of laser weldments in automotive aluminum alloys. Materials Science and Engineering A 2006; 416(1–2): 281–289.
  • 30. Urbański T. Assessment of the productibility of hybrid nodes using the multi-criteria method. Advances in Science and Technology Research Journal 2014; 8(22): 31–36.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4bcbd0bf-4d46-43d0-ab53-e429b4552447
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.